Acta Parasitologica

, Volume 55, Issue 3, pp 254–269 | Cite as

Ultrastructure of the intrauterine eggs of Didymobothrium rudolphii (Monticelli, 1890) (Cestoda, Spathebothriidea, Acrobothriidae) and its phylogenetic implications

  • Zdzisław Świderski
  • David I. Gibson
  • Maria João Santos
  • Larisa G. Poddubnaya


The intrauterine polylecithal eggs of the spathebothriidean cestode Didymobothrium rudolphii (Monticelli, 1890) were examined by means of transmission electron microscopy (TEM). Each unembryonated egg is composed of a fertilised oocyte or ovum and several vitelline cells, all surrounded by a newly formed shell. The lumen of the proximal uterus is packed with unutilised vitelline material and eggs at different stages of shell formation. In the proximal region of the uterus, the fertilised oocytes, initially surrounded by dense, discontinuous islands of eggshell material and containing long axonemes of spermatozoa in their cytoplasm, were frequently observed. Sperm axonemes also remain in the oocyte cytoplasm of eggs surrounded by a thick electron-dense shell until the sperm nucleus is transformed into a male pronucleus. Despite the fact that the two-pronuclei stage and cell divisions within the eggs of D. rudolphii were never observed, individual eggs containing several blastomeres of different sizes were seen in the middle and distal regions of the uterus. This provides indirect evidence that at least a few initial cleavage divisions must take place in the intrauterine eggs and direct evidence that the early embryonic development of D. rudolphii starts in utero. The several vitellocytes present in each egg contain nutritive reserves for the developing embryos; these are composed mainly of numerous lipid droplets and a moderate amount of glycogen. In the eggs containing early embryos composed of several blastomeres, the cytoplasm of the degenerating vitellocytes exhibits the presence of so-called ‘foci of cytoplasmic degradation’, which appear to be involved in the autolytic process of the vitellocyte cell components and inclusions, such as a high accumulation of lipids and glycogen. This progressive degeneration of the vitellocytes, considered as an example of programmed cell death or apoptosis, likely contributes towards the resorption of nutritive reserves by the developing embryo. Some of the results of this study are commented upon in relation to the affiliation of the spathebothriideans with other lower cestode groups.


Cestoda Spathebothriidea Didymobothrium rudolphii intrauterine eggs fertilisation eggshell formation ultrastructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruňanská M. 1999. Ultrastructure of primary embryonic envelopes of Proteocephalus longicollis. Helminthologia, 34, 9–13.Google Scholar
  2. Burt M.D.B., Sandeman I.M. 1969. Biology of Bothrimonus (= Diplocotyle) (Pseudophyllidea: Cestoda). Part I. History, description, synonymy, and systematics. Journal of the Fisheries Research Board of Canada, 26, 975–996.Google Scholar
  3. Campbell R.A., Beveridge I. 1994. Order Trypanorhyncha Diesing, 1863. In: (Eds. L.F. Khalil, A. Jones and R.A. Bray) Keys to the Cestode Parasites of Vertebrates. CAB International, Wallingford, 51–148.Google Scholar
  4. Conn D.B. 1988. Development of the embryonic envelopes of Mesocestoides lineatus (Cestoda: Cyclophyllidea). International Journal of Invertebrate Reproduction and Development, 14, 119–130.Google Scholar
  5. Conn D.B., Młocicki D., Świderski Z. 2009. Ultrastructure of the early gravid uterus of Corallobothrium fimbriatum (Cestoda: Proteocephalidea). Parasitology Research, 105, 986–996. DOI: 10.1007/S00436-009-1487-9.CrossRefGoogle Scholar
  6. Conn D.B., Świderski Z. 2008. A standardised terminology of the embryonic envelopes and associated developmental stages of tapeworms (Platyhelminthes: Cestoda). Folia Parasitologica, 55, 42–52.PubMedGoogle Scholar
  7. Euzet L., Mokhtar-Maamouri F. 1975. Developpement embryonnaire de trois Cestodes du genre Acanthobothrium (Tetraphyllidea, Onchobothriidae). Annales de Parasitologie Humaine et Comparée, 50, 675–690.PubMedGoogle Scholar
  8. Euzet L., Mokhtar-Maamouri F. 1976. Developpement embryonnaire de deux Phyllobothriidae (Cestoda, Tetraphyllidea). Annales de Parasitologie Humaine et Comparée, 51, 309–327.PubMedGoogle Scholar
  9. Gibson D.I. 1994. Order Spathebothriidea Wardle and McLeod, 1952. In: (Eds. L.F. Khalil, A. Jones and R.A. Bray) Keys to the Cestode Parasites of Vertebrates. CAB International, Wallingford, 15–19.Google Scholar
  10. Gibson, D.I., Valtonen E.T. 1984. Two interesting records of tapeworms from Finnish waters. Aquilo (Ser. Zoologica), 22, 45–49.Google Scholar
  11. Hoberg E.P., Mariaux J., Brooks D.R. 2001. Phylogeny among orders of the Eucestoda (Cercomeromorphae): integrating morphology, molecules and total evidence. In: (Eds. D.T.J. Littlewood and R.A. Bray) Interrelationships of the Platyhelminthes. Taylor & Francis, London, 112–126.Google Scholar
  12. Jabbar A., Swiderski Z., Mlocicki D., Beveridge I., Lightowlers M.W. 2010. The ultrastructure of taeniid cestode oncospheres and localization of host-protective antigens. Parasitology, 137, 521–535. DOI: 10.1017/S0031182009991260.CrossRefPubMedGoogle Scholar
  13. Janicki C. 1918. Neue Studien uber post-embryonale Entwicklung und Wirstwechsel bei Bothriocephalen. I. Triaenophorus nodulosus (Pall.). Correspondenz-Blatt für Schweizer Ärzte, 48(40), 1343–1349.Google Scholar
  14. Jarecka L. 1975. Ontogeny and evolution of cestodes. Acta Parasitologica Polonica, 23, 93–114.Google Scholar
  15. Kuchta R., Scholz T., Brabec J., Bray R.A. 2008. Suppression of the tapeworm order Pseudophyllidea (Platyhelminthes: Eucestoda) and the proposal of two new orders, Bothriocephalidea and Diphyllobothriidea. International Journal for Parasitology, 38, 49–55. DOI: 10.1016/j.ijpara.2007.08.005.CrossRefPubMedGoogle Scholar
  16. Kuperman B.I. 1988. Functional morphology of lower cestodes: ontogenetic and evolutionary aspects. Nauka, Leningrad, 167 pp. (In Russian).Google Scholar
  17. Mackiewicz J.S. 1972. Caryophyllidea (Cestoidea): a review. Experimental Parasitology, 31, 417–512. DOI: 10.1016/0014-4894(72)90103-8.CrossRefPubMedGoogle Scholar
  18. Mackiewicz J.S. 1981. Caryophyllidea (Cestoidea): evolution and classification. Advances in Parasitology, 19, 139–206. DOI:10.1016/S0065-308X.CrossRefGoogle Scholar
  19. Mariaux J., Olson P.D. 2001. Cestode systematics in a molecular era. In: (Eds. D.T.J. Littlewood and R.A. Bray) Interrelationships of the Platyhelminthes. Taylor & Francis, London, 127–134.Google Scholar
  20. Marques J.F., Santos F.J., Gibson D.I., Cabral H.N., Olson P.D. 2007. Cryptic species of Didymobothrium rudolphii (Cestoda: Spathebothriidea) from the sand sole Solea lascaris, off the Portuguese coast with analysis of their molecules, morphology, ultrastructure and phylogeny. Parasitology, 134, 1057–1072. DOI: 10.1017/S0031182007002491.CrossRefPubMedGoogle Scholar
  21. McKerr G. 1985. The fine structure and physiology of a trypanorhynch tapeworm Grillotia erinaceus. PhD Thesis, The Queen’s University of Belfast, Northern Ireland, UK, 205 pp.Google Scholar
  22. Młocicki D., Świderski Z., Miquel J., Eira C., Conn D.B. 2006. Cellular organization of the oncosphere of Mosgovoyia ctenoides (Cestoda: Anoplocephalidae). Journal of Parasitology, 92, 953–961. DOI: 10.1645/GE-790R1.1.CrossRefPubMedGoogle Scholar
  23. Młocicki D., Świderski Z., Conn D.B. 2010. Ultrastructure of the early embryonic development of Corallobothrium fimbriatum (Cestoda: Proteocephalidea). Journal of Parasitology (in press).Google Scholar
  24. Mokhtar-Maamouri F. 1976. Etude ultrastructurale de la gametogenese et des premiers stades du developpement embryonaire de deux cestodes Tetraphyllidea. These du doctorat d’Etat, U.S.T.L, Montpellier, 224 pp.Google Scholar
  25. Okaka C.E. 2000. Maturity of the procercoid of Cyathocephalus truncatus (Eucestoda: Spathebothriidea) in Gammarus pulex (Crustacea: Amphipoda) and the tapeworms life cycle using the amphipod as the sole host. Helminthologia, 37, 153–157.Google Scholar
  26. Olson P.D., Littlewood D.T.J., Bray R.A., Mariaux J. 2001. Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Molecular Phylogeny and Evolution, 19, 443–467. DOI: 10.1006/mpev.2001.0930.CrossRefGoogle Scholar
  27. Olson P.D., Tkach V.V. 2005. Advances and trends in the molecular systematics of the parasitic Platyhelminthes. Advances in Parasitology, 60, 165–243. DOI: 10.1016/S0065-308X.CrossRefPubMedGoogle Scholar
  28. Olson P.D., Poddubnaya L.G., Littlewood D.T.J., Scholz T. 2008. On the position of Archigetes and its bearing on the early evolution of the tapeworms. Journal of Parasitology, 94, 898–904. DOI: 10.1645/GE-1456.1.CrossRefPubMedGoogle Scholar
  29. Poddubnaya L.G., Gibson D.I., Olson P.D. 2007. Ultrastructure of the ovary, ovicapt and oviduct of the spathebothriidean tapeworm Didymobothrium rudolphii (Monticelli, 1890). Acta Parasitologica, 52, 127–134. DOI: 10.2478/s11686-007-0014-3.CrossRefGoogle Scholar
  30. Poddubnaya L.G., Gibson D.I., Świderski Z., Olson P.D. 2006. Vitellocyte ultrastructure in the cestode Didymobothrium rudolphii (Monticelli, 1890): possible evidence for the recognition of divergent taxa within the Spathebothriidea. Acta Parasitologica, 51, 255–263. DOI: 10.2478/s11686-006-0039-z.CrossRefGoogle Scholar
  31. Protasova E.N., Roytman V.A. 1995. Cyathocephalates, tapeworm helminths of marine and freshwater fish (Cestoda: Pseudophyllidea: Cyathocephalata). Essentials of Cestodology. Vol. 12. Institute of Parasitology, Russian Academy of Sciences, Moscow, 134 pp. (In Russian).Google Scholar
  32. Renaud F., Gabrion C. 1988. Speciation in Cestoda: evidence for two sibling species in the complex Bothrimonus nylandicus (Schneider, 1902) (Cestoda: Cyathocephalidae). Parasitology, 97, 139–147. DOI: 10.1017/S0031182000066816.CrossRefPubMedGoogle Scholar
  33. Ruszkowski J.S. 1932. Etudes sur le cycle evolutif et la structure des cestodes de mer. III. Le cycle evolutif de tetrarhynque Grillotia erinaceus (van Beneden, 1858). Comptes Rendus Mensuels des Séances de la Classes des Sciences Mathématiques et Naturelles. Académie Polonaise des Sciences et des Lettres, 9, 6.Google Scholar
  34. Rybicka K. 1966. Embryogenesis in cestodes. Advances in Parasitology, 4, 107–186. DOI: 10.1016/S0065-308X.CrossRefPubMedGoogle Scholar
  35. Sandeman I.M., Burt M.D.B. 1972. Biology of Bothrimonus (= Diplocotyle) (Pseudophyllidea: Cestoda). Part II. Ecology, life cycle and evolution; a review and synthesis. Journal of the Fisheries Research Board of Canada, 29, 1381–1395.Google Scholar
  36. Świderski Z. 1968a. Electron microscopy of embryonic envelope formation by the cestode Catenotaenia pusilla. Experimental Parasitology, 23, 104–113. DOI: 10.1016/0014-4894.CrossRefGoogle Scholar
  37. Świderski Z. 1968b. An electron microscopic evidence of the degeneration of some micromeres during the embryonic development of the cestode Catenotaenia pusilla (Goeze, 1782) (Cyclophyllidea, Catenotaeniidae). Zoologica Poloniae, 18, 469–474.Google Scholar
  38. Świderski Z. 1972. La structure fine de l’oncosphere du cestode Catenotaenia pusilla (Goeze, 1782) (Cyclophyllidea, Catenotaeniidae). La Cellule, 69, 207–237.Google Scholar
  39. Świderski Z. 1976. Fertilization in the cestode Hymenolepis diminuta (Cyclophyllidea, Hymenolepididae). In: (Ed. B. Feldman-Mushan) Proceedings of the 6th European Congress on Electron Microscopy, 14–20 September 1976, Jerusalem, Israel, 311–312.Google Scholar
  40. Świderski Z. 1981. Reproductive and developmental biology of the cestodes. In: (Eds. W.A. Clark and T.S. Adams) Advances in invertebrate reproduction. Elsevier/North Holland Biomedical Press, New York, Amsterdam, Oxford, 365–366.Google Scholar
  41. Świderski Z. 1994a. Origin, differentiation and ultrastructure of egg envelopes surrounding the miracidia of Schistosoma mansoni. Acta Parasitologica, 39, 64–72.Google Scholar
  42. Świderski Z. 1994b. Origin, differentiation and ultrastructure of egg envelopes surrounding the coracidia of Bothriocephalus clavibothrium. Acta Parasitologica, 39, 73–81.Google Scholar
  43. Świderski Z. 1994c. Homology and analogy in of egg envelopes surrounding the coracidia of Bothriocephalus clavibothrium and miracidia of Schistosoma mansoni. Acta Parasitologica, 39, 123–130.Google Scholar
  44. Świderski Z. 2008. Biodiversity of parasite eggs: their importance for disease dissemination and diagnostics. In: Commemorative Volume of Proceedings Published on the Occasion of the International Conference Dedicated to the 130th Anniversary of the Birthday of Academician K.I. Skrjabin, 453–459.Google Scholar
  45. Świderski Z., Bruňanska M., Młocicki D., Conn D.B. 2005. Ultrastructure of the oncospheral envelopes in the pseudophyllidean Eubothrium salvelini (Schrank, 1790). Acta Parasitologica, 50, 312–318.Google Scholar
  46. Świderski Z., Conn D.B. 1999. Ultrastructural aspects of fertilization in Proteocephalus longicollis, Inermicapsifer madagascariensis, and Mesocestoides lineatus (Platyhelminthes, Cestoda). Acta Parasitologica, 44, 19–30.Google Scholar
  47. Świderski Z., Conn D.B., Miquel J., Młocicki D. 2004. Fertlization in the cestode Gallegoides arfaai (Mobedi et Ghadirian, 1977) Tenora et Mas-Coma, 1978 (Cyclophyllidea, Anoplocephalidae). Acta Parasitologica, 49, 108–115.Google Scholar
  48. Świderski Z., Mackiewicz J.S. 2004. Ultrastructural studies on the cellular organisation of the coracidia of the cestode Bothriocephalus clavibothrium Ariola, 1899 (Pseudophyllidea, Bothriocephalidae). Acta Parasitologica, 49, 116–139.Google Scholar
  49. Świderski Z., Mackiewicz J.S. 2007a. Ovoviviparity in cestode parasites of fishes. In: Proceedings of the 7th International Symposium on Fish Parasites, Viterbo, Italy. Parassitologia, 49,Suppl. 2, 393.Google Scholar
  50. Świderski Z., Mackiewicz J.S. 2007b. Ultrastructure of polylecithal and oligolecithal eggs of cestode parasites of fishes: comparative TEM study. In: Proceedings of the 7th International Symposium on Fish Parasites, Viterbo, Italy. Parassitologia, 49,Suppl. 2, 394.Google Scholar
  51. Świderski Z., Młocicki D., Mackiewicz J.S., Miquel J., Ibraheem M.H., Bruňanska M. 2009. Ultrastructure and cytochemistry of vitellogenesis in Wenyonia virilis Woodland, 1923 (Cestoda, Caryophyllidea). Acta Parasitologica, 54, 131–142. DOI: 10.2478/s11686-009-0028-0.CrossRefGoogle Scholar
  52. Świderski Z., Ndiaye P.I., Tkach V., Miquel J., Marchand B., Chomicz L., Sereda M.J. 2001a. Ultrastructural study of the embryonic development of the anoplocephalid cestode Anoplocephaloides dentata, intestinal parasite of Arvicolidae rodents. I. Egg envelope formation. Acta Parasitologica, 46, 171–185.Google Scholar
  53. Świderski Z., Ndiaye P.I., Miquel J., Tkach V., Marchand B., Chomicz L., Grytner-Zięcina B., Sereda M.J. 2001b. Ultrastructural study of the embryonic development of the anoplocephalid cestode Anoplocephaloides dentata, intestinal parasite of Arvicolidae rodents. II. Differentiation and cellular organisation of the oncosphere. Acta Parasitologica, 46, 280–292.Google Scholar
  54. Świderski Z., Ndiaye P.I., Miquel J. 2004. Electron microscope studies on egg formation and ultrastructure of the unembryonated, intrauterine eggs of Fasciola gigantica Cobbold, 1856 (Trematoda, Digenea). (Eds. S. Mas-Coma, M.D. Bargues, J.G. Esteban and M.A. Valero) Proceedings of the 9th European Multicolloquium of Parasitology, July 18–23, 2004, Valencia, Spain, Abstract: 1252(I0), 604.Google Scholar
  55. Świderski Z., Subilia L. 1978. Electron microscopy of embryonic envelope formation by the cestode Proteocephalus longicollis (Zeder, 1800) (Proteocephalidea). In: (Eds. P. Broderoo and W. Priester) Proceedings of the 9th International Congress on Electron Microscopy, 1–9 August, 1978, Toronto, Canada, 2, 444–445.Google Scholar
  56. Świderski Z., Tkach V.V. 1997a. Ultrastructure of the infective eggs of the hymenolepidid cestode Ditestolepis tripartita (Zarnowski, 1955), a parasite of shrews. Acta Parasitologica, 42, 46–54.Google Scholar
  57. Świderski Z., Tkach V.V. 1997b. Ultrastructural studies on the cellular organisation of the oncosphere of the nematotaeniid cestode Nematotaenia dispar (Goeze, 1782). Acta Parasitologica, 42, 158–167.Google Scholar
  58. Świderski Z., Xylander W.E.R. 2000. Vitellocytes and vitellogenesis in cestodes in relation to development, egg production and life cycle. International Journal for Parasitology, 30, 805–817. DOI: 10.1016/S0020-7519(00)00066-7.CrossRefPubMedGoogle Scholar
  59. Tinsley R.C. 1983. Ovoviviparity in platyhelminth life cycles. Parasitology, 86, 161–196. DOI: 10.1017/S0031182000050885.CrossRefPubMedGoogle Scholar
  60. Waeschenbach A., Webster B.L., Bray R.A., Littlewood D.T.J. 2007. Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Molecular Phylogeny and Evolution, 45, 311–325. DOI: 10.1016/j.ympev.2007.03.019.CrossRefGoogle Scholar
  61. Wiśniewski L.W. 1932. Cyathocephalus truncatus Pallas. II. Allgemeine Morphologie. Bulletin International de l’Académie Polonaise des Sciences et des Lettres. Class des Sciences Mathématiques et Naturelles, Série B: Sciences Nat. (II), (1932), 311–327.Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zdzisław Świderski
    • 1
    • 2
  • David I. Gibson
    • 3
  • Maria João Santos
    • 4
    • 5
  • Larisa G. Poddubnaya
    • 6
  1. 1.W. Stefański Institute of ParasitologyPolish Academy of SciencesWarsawPoland
  2. 2.Department of General Biology and ParasitologyWarsaw Medical UniversityWarsawPoland
  3. 3.Department of ZoologyNatural History MuseumLondonUK
  4. 4.Faculdade de Ciências, Departamento de BiologiaUniversidade do PortoPortoPortugal
  5. 5.CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e AmbientalPortoPortugal
  6. 6.Institute of Biology of Inland WatersRussian Academy of SciencesBorok, Yaroslavl ProvinceRussia

Personalised recommendations