Acta Parasitologica

, Volume 55, Issue 2, pp 123–132 | Cite as

The spatial relationship between the musculature and the 5-HT and FMRFamide immunoreactivities in cercaria, metacercaria and adult Opisthorchis felineus (Digenea)

  • Oleg O. Tolstenkov
  • Nadezhda B. Terenina
  • Elena A. Serbina
  • Margaretha K. S. Gustafsson
Article

Abstract

The organisation of the neuromuscular system in cercariae, metacercariae and adult Opisthorchis felineus was studied. The patterns of nerves immunoreactive (IR) to antibodies towards serotonin (5-HT) and FMRFamide are described in relation to the musculature, stained with TRITC-conjugated phalloidin. The general organisation of the musculature in the body wall, suckers, pharynx, intestine and sphincter of the excretory pore remains the same from the larval stages to the adult worms. However, the diameter of the individual muscle fibres increases distinctly in the adult worms. The general pattern of 5-HT IR fibres in cercariae, metacercariae and adult O. felineus remains the same. Despite the large increase in body size, the number of 5-HT IR neurones remains almost the same in the cercariae and metacercariae and only a modest increase in number of neurones was observed in the adult worms. Thus the proportion of 5-HT IR neurones/body mass is greatest in the actively moving cercariae. Anti-FMRFamide stains the nervous system strongly.

Keywords

Opisthorchis felineus serotonin FMRFamide neuromuscular system larvae adult 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton C.L., Halton D.V., Shaw C., Maule A.G., Johnston C.F. 1993. An immunocytochemical study of putative neurotransmitters in the metacercariae of two strigeoid trematodes from rainbow trout (Oncorhynchus mykiss). Parasitology Research, 79, 389–396. DOI: 10.1007/BF00931828.CrossRefPubMedGoogle Scholar
  2. Be’er S.A. 2005. Biology of the agent of opisthorchiasis. KMK Scientific Press LTD, Moscow, 336 pp. (In Russian).Google Scholar
  3. Coons A.H., Leduc E.H., Connolly J.M. 1955. Studies of antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. Journal of Experimental Medicine, 102, 49–60.CrossRefPubMedGoogle Scholar
  4. Czubaj A., Niewiadomska K. 1997. The muscular system of cercaria of Diplostomum pseudospathaceum Niew., 1984 (Digenea): a phalloidin-rhodamine fluorescence and TEM study. Acta Parasitologica, 42, 199–218.Google Scholar
  5. Day T.A., Maule A.G. 1999. Parasitic peptides! The structure and function of neuropeptides in parasitic worms. Peptides, 20, 999–1019. DOI: 10.1016/S0196-9781(99)00093-5.CrossRefPubMedGoogle Scholar
  6. Gustafsson M.K.S., Halton D.W. 2001. Nervous system of Platyhelminthes. In: (Ed. H. Mehlhorn) Encyclopedic Reference of Parasitology. Springer, Berlin, Heidelberg, New York, 423–439.Google Scholar
  7. Halton D.W. 2004. Microscopy and the helminth parasite. Micron, 35, 361–390. DOI: 10.1016/j.micron.2003.12.001.CrossRefPubMedGoogle Scholar
  8. Halton D.W., Gustafsson M.K.S. 1996. Functional morphology of the platyhelminth nervous system. Parasitology, 113, S47–S72. DOI: 10.1017/S0031182000077891.CrossRefGoogle Scholar
  9. Halton D.W., Maule A.G. 2004. Flatworm nerve-muscle: structural and functional analysis. Canadian Journal of Zoology, 82, 316–333. DOI: 10.1139/z03-221.CrossRefGoogle Scholar
  10. Joffe B.I., Kotikova E.A., Resnik G.K. 1988. Structure of marita nervous system of Opisthorchis felineus. In: Proceedings of the All-Union K.I. Skryabin Institute of Helminthology, 29, 60–68 (In Russian).Google Scholar
  11. Kolmogorova E.J. 1959. Structure of the central parts of the nervous system in Opisthorchis felineus. Zoological Journal, 38, 1627–1633 (In Russian).Google Scholar
  12. Kotikova E.A., Joffe B.I., Resnik G.K. 1985. About structure of marita nervous system of trematodes. In: Proceedings of “Simple nervous systems”, Kazan, 1, 105–107 (In Russian).Google Scholar
  13. Kreshchenko N.D., Reuter M., Sheiman I.M., Halton D.W., Johnston R.N., Shaw C., Gustafsson M.K.S. 1999. Relationship between musculature and nervous system in the regenerating pharynx of Girardia tigrina (Plathelminthes). Invertebrate Reproduction and Development, 35, 109–125.Google Scholar
  14. Pan J.Z., Halton D.W., Shaw C., Maule A.G., Johnston C.F. 1994. Serotonin and neuropeptide immunoreactivities in the intramolluscan stages of three marine trematode parasites. Parasitology Research, 80, 388–395. DOI: 10.1007/BF00932376.CrossRefPubMedGoogle Scholar
  15. Reisinger E. 1972. Die Evolution des Orthogons der Spiralier und das Archicoelomatenproblem. Zeitschrift für Zoologischer Systematik und Evolutionsforschung, 10, 1–43.Google Scholar
  16. Reuter M., Gustafsson M.K.S. 1995. The flatworm nervous system: Pattern and phylogeny. In: (Eds. O. Breidbach and W. Kutsch) The nervous system of invertebrates: An evolutionary and comparative approach. Birkhäuser Verlag, Basel, 25–59.Google Scholar
  17. Šebelová Š., Stewart M.T., Mousley A., Fried B., Marks N.J., Halton D.W. 2004. The musculature and associated innervation of adult and intramolluscan stages of Echinostoma caproni (Trematoda) visualised by confocal microscopy. Parasitology Research, 93, 196–206. DOI: 10.1007/s00436-004-1120-x.CrossRefPubMedGoogle Scholar
  18. Shishov B.A. 1991. Aminergic elements in the nervous system of helminths. In: (Eds. D.A. Sakharov and W. Winlow) Simpler Nervous Systems. Manchester University Press, Manchester, New York, 113–137.Google Scholar
  19. Shishov B.A., Terenina N.B., Lyukshina L.M. 1988. Biogenic amines in Opisthorchis felineus nervous system. Medical Parasitology and Parasitic Diseases, 2, 68–72 (In Russian).Google Scholar
  20. Stewart M.T., Mousley A., Koubková B., Šebelová Š, Marks N.J., Halton D.W. 2003a. Gross anatomy of the muscle systems and associated innervation of Apatemon cobitidis proterorhini metacercariae (Trematoda: Strigeidea), as visualised by confocal microscopy. Parasitology, 126, 273–282. DOI: 10.1017/S0031182002002780.CrossRefPubMedGoogle Scholar
  21. Stewart M.T., Marks N.J., Halton D.W. 2003b. Neuroactive substances and associated major muscle systems in Bucephaloides gracilescens (Trematoda: Digenea) metacercariae and adult. Parasitology Research, 91, 12–21. DOI: 10.1007/s00436-003-0896-4.CrossRefPubMedGoogle Scholar
  22. Sudarikov V.E., Shigin A.A., Kurochkin Y.V., Lomakin V.V., Stenko R.P., Jurlova N.I. 2002. Metacercariae of trematodes — parasites of hydrocoeles of Russia. NAUKA, Moscow, 298 pp. (In Russian).Google Scholar
  23. Terenina N.B., Gustafsson M.K.S. 2003a. Neurotransmitters in helminths (biogenic amines, nitric oxide) In: (Ed. S.O. Movsessian). NAUKA, Moscow, 178 pp. (In Russian).Google Scholar
  24. Terenina N.B., Gustafsson M.K.S. 2003b. Nitric oxide and its target cells in cercaria of Diplostomum chromatophorum: a histochemical and immunocytochemical study. Parasitology Research, 89, 199–206.PubMedGoogle Scholar
  25. Terenina N.B., Tolstenkov O.O., Fagerholm H.-P., Serbina E.A., Vodjanitskaja S.N., Gustafsson M.K.S. 2006. The spatial relationship between the musculature and the NADPH-diaphorase activity, 5-HT and FMRFamide immunoreactivities in redia, cercaria and adult Echinoparyphium aconiatum. Tissue and Cell, 38, 151–157. DOI: 10.1016/j.tice.2006.01.003.CrossRefPubMedGoogle Scholar
  26. Terenina N.B., Gustafsson M.K.S., Tolstenkov O.O., Serbina E.A. 2008. Opisthorchis felineus: Serotoninergic and peptidergic components in nerve system in cercariae, metacercariae and adult. In: Proceedings of the International Symposium of the 130th Aniversary of Academician K.I. Skryabin, 2–11 December 2008, Moscow, 468–470 (In Russian).Google Scholar
  27. Tolstenkov O.O., Terenina N., Gustafsson M., Serbina E., Kreshchenko N., Maklakova L., Jashina A. 2008. The pattern of serotonin and FMRFamide in cercaria from different taxonomic groups — a preliminary study. Acta Biologica Hungarica, 59, 221–225.CrossRefPubMedGoogle Scholar
  28. Ursone R.L., Fried B. 1995. Light and scanning electron microscopy of Echinostoma caproni (Trematoda) during maturation in ICR mice. Parasitology Research, 81, 45–51. DOI: 10.1007/BF00932416.CrossRefPubMedGoogle Scholar
  29. Wahlberg M.H. 1998. The distribution of F-actin during the development of Diphyllobothrium dendriticum (Cestoda). Cell and Tissue Research, 291, 561–570. DOI: 10.1007/s004410051025.CrossRefPubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Oleg O. Tolstenkov
    • 1
  • Nadezhda B. Terenina
    • 1
  • Elena A. Serbina
    • 2
  • Margaretha K. S. Gustafsson
    • 3
  1. 1.Centre of Parasitology of A. N. Servertsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Animal Systematics and EcologyRussian Academy of SciencesNovosibirskRussia
  3. 3.Department of BiologyÅbo Akademi UniversityÅboFinland

Personalised recommendations