Acta Parasitologica

, Volume 55, Issue 1, pp 20–28 | Cite as

Introgression of distant mitochondria into the genome of Gyrodactylus salaris: Nuclear and mitochondrial markers are necessary to identify parasite strains

  • Marek S. Ziętara
  • Magdalena Rokicka
  • Stojmir Stojanovski
  • Jaakko Lumme
Article

Abstract

Novel combinations of mitochondrial DNA (CO1) and internal transcribed spacers of nuclear ribosomal DNA (ITS) were detected among Gyrodactylus parasites on brown trout (Salmo trutta L.), rainbow trout (Oncorhynchus mykiss (Walbaum)), and Ohrid trout (Salmo letnica (Karaman)) from salmonid farms in Poland and Macedonia. Some clones differed from standard ITS only by ≤ 4 nucleotides, but they belonged to a mtDNA clade that differed from the Northern European lineages of G. salaris by dMCL = 0.266 ± 0.108 (maximum composite likelihood distance). The divergence of dMCL = 0.013 ± 0.005 within the alien mtDNA clade suggested introgression from an unknown maternal ancestor into the G. salaris Malmberg genome 137 to 57 kyr ago (or, less probably, repeated introgression). A comparable modern hybrid was detected based on permanently heterozygous ITS (28 bp/1264 = 2.2%) in a clone that is widespread throughout Finnish rainbow trout farms. This was a F1 hybrid of maternal G. pomeraniae Kuusela, Ziętara et Lumme (on roach, Rutilus rutilus (L.)) and G. lavareti Malmberg (on whitefish, Coregonus lavaretus (L.)). The mtDNA of the parental species differed by dMCL = 0.290 ± 0.130. The observations emphasize that both nuclear and maternally-inherited DNA markers are necessary to characterize sexually-produced lineages or clones of Gyrodactylus. The hybridization events demonstrated predict incongruence of mitochondrial vs. nuclear gene trees, i.e., reticulate evolution in species trees.

Keywords

Hybrid speciation ITS of nrDNA mitochondrial phylogeny barcoding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cunningham C.O. 1997. Species variation within the internal transcribed spacer (ITS) region of Gyrodactylus (Monogenea: Gyrodactylidae) ribosomal RNA genes. Journal of Parasitology, 83, 215–219. DOI: 10.2307/3284442.CrossRefPubMedGoogle Scholar
  2. Cunningham C.O., Aliesky H., Collins C.M. 2000. Sequence and secondary structure variation in the Gyrodactylus (Platyhelminthes: Monogenea) ribosomal RNA gene array. Journal of Parasitology, 86, 567–576. DOI: 10.1645/0022-3395(2000)086 [0567:SASSVI]2.0.CO;2.CrossRefPubMedGoogle Scholar
  3. Cunningham C.O., Mo T.A., Collins C.M., Buchmann K., Thiery R., Blanc G., Lautraite A. 2001. Redescription of Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel & Vigneulle, 1999 (Monogenea: Gyrodactylidae); a species identified by ribosomal RNA sequence. Systematic Parasitology, 48, 141–150. DOI: 10.1023/A:1006407428666.CrossRefPubMedGoogle Scholar
  4. Ergens R. 1983. Gyrodactylus from Eurasian freshwater Salmonidae and Thymallidae. Folia Parasitologica, 30, 15–26.Google Scholar
  5. Fausch K.D. 2007. Introduction, establishment and effects of nonnative salmonids: considering the risk of rainbow trout invasion in the United Kingdom. Journal of Fish Biology, 71, 1–32. DOI: 10.1111/j.1095-8649.2007.01682.x.CrossRefGoogle Scholar
  6. Funk D.J., Omland K.E. 2003. Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34, 397–423. DOI: 10.1146/annurev.ecolsys. 34.011802.132421.CrossRefGoogle Scholar
  7. Hansen H., Bachmann L., Bakke T.A. 2003. Mitochondrial DNA variation of Gyrodactylus spp. (Monogenea, Gyrodactylidae) populations infecting Atlantic salmon, grayling and rainbow trout in Norway and Sweden. International Journal for Parasitology, 33, 1471–1478. DOI: 10.1016/S0020-7519(03)00 200-5.CrossRefPubMedGoogle Scholar
  8. Hansen H., Martinsen L., Bakke T.A., Bachmann L. 2006. The incongruence of nuclear and mitochondrial DNA variation supports conspecificity of the monogenean parasites Gyrodactylus salaris and G. thymalli. Parasitology, 133, 639–650. DOI: 10.1017/S0031182006000655.CrossRefPubMedGoogle Scholar
  9. Hansen H., Bakke T.A., Bachmann L. 2007a. Mitochondrial haplotype diversity of Gyrodactylus thymalli (Platyhelminthes; Monogenea): extended geographic sampling in United Kingdom, Poland and Norway reveals further lineages. Parasitology Research, 100, 1389–1394. DOI: 10.1007/s00436-006-0423-5.CrossRefPubMedGoogle Scholar
  10. Hansen H., Bakke T.A., Bachman L. 2007b. DNA taxonomy and barcoding of monogenean parasites: lessons from Gyrodactylus. Trends in Parasitology, 23, 363–367. DOI: 10.1016/j.pt.2007.06.007.CrossRefPubMedGoogle Scholar
  11. Huyse T., Malmberg G., Volckaert F.A.M. 2004. Four new species of Gyrodactylus von Nordmann, 1832 (Monogenea, Gyrodactylidae) on gobiid fishes: combined DNA and morphological analyses. Systematic Parasitology, 59, 103–120. DOI: 10.1023/B: SYPA.0000044427.81580.33.CrossRefPubMedGoogle Scholar
  12. Huyse T., Plaisance L., Webster B.L., Mo T.A., Bakke T.A., Bachmann L., Littlewood D.T.J. 2007. The mitochondrial genome of Gyrodactylus salaris (Platyhelminthes: Monogenea), a pathogen of Atlantic salmon (Salmo salar). Parasitology, 134, 739–747. DOI: 10.1017/S0031182006002010.CrossRefPubMedGoogle Scholar
  13. Huyse T., Webster B.L., Geldof S., Stothard J.R., Diaw O.T., Polman K., Rollinson D. 2009. Bidirectional introgressive hybridization between a cattle and human schistosome species. PLoS Pathogens, 5(9), 1–9; e1000571; www.plospathogens.org.CrossRefGoogle Scholar
  14. Jørgensen T.R., Larsen T.B., Jorgensen L.G., Bresciani J., Kania P.W., Buchmann K. 2007. Characterization of a low pathogenic form of Gyrodactylus salaris from rainbow trout. Diseases of Aquatic Organisms, 73, 235–244. DOI: 10.3354/dao073235.CrossRefPubMedGoogle Scholar
  15. Kania P.W., Jørgensen T.R., Buchmann K. 2007. Differentiation between a pathogenic and a non-pathogenic form of Gyrodactylus salaris using PCR-RFLP. Journal of Fish Diseases, 30, 123–126. DOI: 10.1111/j.1365-2761.2007.00786.x.CrossRefPubMedGoogle Scholar
  16. Kunz W. 2002. When is a parasite species a species? Trends in Parasitology, 18, 121–124. DOI: 10.1016/S1471-4922(01)02210-3.CrossRefPubMedGoogle Scholar
  17. Kuusela J., Ziętara M.S., Lumme J. 2007. Hybrid origin of Baltic salmon-specific parasite Gyrodactylus salaris: a model for speciation by host switch for hemiclonal organisms. Molecular Ecology, 16, 5234–5245. DOI: 10.1111/j.1365-294X. 2007.03562.x.CrossRefPubMedGoogle Scholar
  18. Kuusela J., Ziętara M.S., Lumme J. 2008. Description of three new European cryptic species of Gyrodactylus Nordmann, 1832 supported by nuclear and mitochondrial phylogenetic characterization. Acta Parasitologica, 52, 120–126. DOI: 10.2478/s11686-008-0015-x.CrossRefGoogle Scholar
  19. Kuusela J., Holopainen R., Meinilętara M.S., Veselov A., Primmer C.R., Lumme J. 2009. Clonal structure of salmon parasite Gyrodactylus salaris on a coevolutionary gradient on Fennoscandian salmon (Salmo salar). Annales Zoologici Fennici, 46, 21–33.Google Scholar
  20. Lindenstrøm T., Collins C.M., Bresciani J., Cunningham C.O., Buchmann K. 2003. Characterization of a Gyrodactylus salaris variant: infection biology, morphology and molecular genetics. Parasitology, 127, 165–177. DOI: 10.1017/S003118200 300341X.CrossRefPubMedGoogle Scholar
  21. Matějusová I., Gelnar M., McBeath A.J.A., Collins C.M., Cunningham C.O. 2001. Molecular markers for gyrodactylids (Gyrodactylidae: Monogenea) from five fish families (Teleostei). International Journal for Parasitology, 31, 738–745. DOI: 10.1016/S0020-7519(01)00176-X.CrossRefPubMedGoogle Scholar
  22. Matějusová I., Gelnar M., Verneau O., Cunningham C.O., Littlewood D.T.J. 2003. Molecular phylogenetic analysis of the genus Gyrodactylus (Platyhelminthes: Monogenea) inferred from rDNA ITS region: subgenera versus species groups. Parasitology, 127, 603–611. DOI: 10.1017/S0031182003004098.CrossRefPubMedGoogle Scholar
  23. Meinilä M., Kuusela J., Ziętara M.S., Lumme J. 2002. Primers for amplifying ∼820 bp of highly polymorphic mitochondrial COI gene of Gyrodactylus salaris. Hereditas, 137, 72–74. DOI: 10.1034/j.1601-5223.2002.1370110.x.CrossRefPubMedGoogle Scholar
  24. Meinilä M., Kuusela J., Ziętara M.S., Lumme J. 2004. Initial steps of speciation by geographic isolation and host switch in salmonid pathogen Gyrodactylus salaris (Monogenea: Gyrodactylidae). International Journal for Parasitology, 34, 515–526. DOI: 10.1016/j.ijpara.2003.12.002.CrossRefPubMedGoogle Scholar
  25. Polanco C., González A.I., Dover G.A. 2000. Patterns of variation in the intergenic spacers of ribosomal DNA in Drosophila melanogaster support a model for genetic exchanges during X-Y pairing. Genetics, 155, 1221–1229.PubMedGoogle Scholar
  26. Robertsen G., Hansen H., Bachmann L., Bakke T.A. 2007. Arctic charr (Salvelinus alpinus) is a suitable host for Gyrodactylus salaris (Monogenea, Gyrodactylidae) in Norway. Parasitology, 134, 257–267. DOI: 10.1017/S0031182006001223.CrossRefPubMedGoogle Scholar
  27. Rokicka M., Lumme J., Ziętara M.S. 2007. Identification of Gyrodactylus ectoparasites in Polish salmonid farms by PCRRFLP of the nuclear ITS segment of ribosomal DNA (Monogenea, Gyrodactylidae). Acta Parasitologica, 52, 185–195. DOI: 10.2478/s11686-007-0032-1.CrossRefGoogle Scholar
  28. Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599. DOI: 10.1093/molbev/msm092.CrossRefPubMedGoogle Scholar
  29. Ziętara M.S., Arndt A., Geets A., Hellemans B., Volckaert F.A.M. 2000. The nuclear rDNA region of Gyrodactylus arcuatus and G. branchicus (Monogenea: Gyrodactylidae). Journal of Parasitology, 86, 1368–1373. DOI: 10.1645/0022-3395(2000) 086 [1368:TNRROG]2.0.CO;2.CrossRefGoogle Scholar
  30. Ziętara M.S., Lumme J. 2002. Speciation by host switch and adaptive radiation in a fish parasite genus Gyrodactylus (Monogenea: Gyrodactylidae). Evolution, 56, 2445–2458. DOI: 10.1111/j.0014-3820.2002.tb00170.x.PubMedGoogle Scholar
  31. Ziętara M.S., Lumme J. 2003. The crossroads of molecular, typological and biological species concepts: two new species of Gyrodactylus Nordmann, 1832 (Monogenea: Gyrodactylidae). Systematic Parasitology, 55, 39–52. DOI: 10.1023/A:1023 938415148.CrossRefPubMedGoogle Scholar
  32. Ziętara M.S., Johnsen B.O., Lumme J. 2008a. Genetic analysis of the origin of Gyrodactylus salaris-infection on juvenile Atlantic salmon in River Lædalselva. NINA Rapport, 371, 1–14 (In Norwegian).Google Scholar
  33. Ziętara M.S., Kuusela J., Veselov A., Lumme J. 2008b. Molecular faunistics of accidental infections of Gyrodactylus Nordmann, 1832 (Monogenea) parasitic on salmon Salmo salar L. and brown trout Salmo trutta in NW Russia. Systematic Parasitology, 69, 123–135. DOI: 10.1007/s11230-007-9121-7.CrossRefPubMedGoogle Scholar
  34. Ziętara M.S., Kuusela J., Lumme J. 2006. Escape from an evolutionary dead end: a triploid clone of Gyrodactylus salaris is able to revert to sex and switch host (Platyhelminthes, Monogenea, Gyrodactylidae). Hereditas, 143, 84–90. DOI: 10.1111/j.2006.0018-0661.01956.x.CrossRefPubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marek S. Ziętara
    • 1
    • 2
  • Magdalena Rokicka
    • 1
  • Stojmir Stojanovski
    • 3
  • Jaakko Lumme
    • 2
  1. 1.Laboratory of Comparative BiochemistryGdańsk University Biological StationGdaśk-SobieszewoPoland
  2. 2.Department of BiologyUniversity of OuluOuluFinland
  3. 3.Department of Fish ParasitologyHydrobiological InstituteOhridMacedonia

Personalised recommendations