Acta Parasitologica

, Volume 55, Issue 1, pp 8–15 | Cite as

Characterization of a transcriptionally active Tc1-like transposon in the microsporidian Nosema bombycis

  • Jinshan Xu
  • Jie Luo
  • Bettina Debrunner-Vossbrinck
  • Xiaoyan Zhang
  • Hangdeng Liu
  • Zeyang Zhou


The Tc1 transposable element has been found in a wide variety of organisms including vertebrates, insects and fungi but has not been previously reported in Microsporidia. In this study we characterize an intact DNA transposon (NbTc1) from the microsporidian Nosema bombycis. This transposable element encodes a 337 amino acid transposase sequence, which contains the D,D34E functional motif required for transposition. A Southern blot of N. bombycis DNA separated by pulsedesis shows that copies of the NbTc1 transposon are present on 10 of the 14 chromosomes of N. bombycis. Amino acid sequence variation among copies of the NbTc1 is low, suggesting a conserved function for this transposon within N. bombycis. Phylogenetic analysis indicates that NbTc1 is a new member of the Tc1 family lineage, quite distinct from all previously described Tc1 elements, including those from fungi, indicating that NbTc1 forms a unique clade of the Tc1 superfamily. However, the Tc1 transposon is too divergent to resolve the major phylogenetic relationships among these superfamilies. Reverse transcriptase PCR and Solexa sequencing suggest that NbTc1 possesses transcriptional activity. Considering the interest in Microsporidia as biological control agents, the NbTc1 transposon may be a useful vector for the efficient transfection of these important parasites into host species.


Nosema bombycis Tc1-like transposon transposase genome 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelman Z.N., Jasinskiene N., Jame A.A. 2002. Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Molecular and Biochemical Parasitology, 121, 1–10. DOI: 10.1016/S0166-6851(02)00028-2.CrossRefPubMedGoogle Scholar
  2. Avancini R.M.P., Kimberley W.K.O., Robertson H.M. 1996. The genomes of most animals have multiple members of the Tc1 family of transposable elements. Genetica, 98, 131–140. DOI:10.1007/BF00121361.CrossRefPubMedGoogle Scholar
  3. Daboussi M J., Langin T., Brygoo Y. 1992. Fot1, a new family of fungal transposable elements. Molecular and General Genetics, 232, 12–16. DOI: 10.1007/BF00299131.CrossRefPubMedGoogle Scholar
  4. Emmons S.W., Yesner L., Ruan K.S., Katzenberg D. 1983. Evidence for a transposon in Caenorhabditis elegans. Cell, 32, 55–65. DOI: 10.1016/0092-8674(83)90496-8.CrossRefPubMedGoogle Scholar
  5. Franz G., Savakis C. 1991. Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Research, 19, 6646. DOI: 10.1093/nar/19.23.6646.CrossRefPubMedGoogle Scholar
  6. Gill E.E., Becnel J.J., Fast N.M. 2008. ESTs from the microsporidian Edhazardia aedis. BMC Genomics, 9, 296. DOI: 10.1186/1471-2164-9-296.CrossRefPubMedGoogle Scholar
  7. Gueiros-Filho F.J., Beverley S.M. 1997. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science, 276, 1716–1719. DOI: 10.1126/science. 276.5319.1716.CrossRefPubMedGoogle Scholar
  8. Hinkle G., Morrison H.G., Sogin M.L. 1997. Genes coding for reverse transcriptase, DNA-directed RNA polymerase, and chitin synthase from the microsporidian Spraguea lophii. Biological Bulletin, 193, 250–251.PubMedGoogle Scholar
  9. Hirt R.P., Logsdon J.M., Healy B., Dorey M.W., Doolittle W.F., Embley T.M. 1999. Microsporidia are related to fungi: Evidence from the largest subunit of RNA polymerase II and other proteins. Proceedings of the National Academy of Sciences, 96, 580–585. DOI: 10.1073/pnas.96.2.580.CrossRefGoogle Scholar
  10. Ivics Z., Hackett P.B., Plaster R.H., Izsvak Z. 1997. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish and its transposition in human cells. Cell, 91, 501–510. DOI:10.1016/S0092-8674(00)80436-5.CrossRefPubMedGoogle Scholar
  11. Izsvak Z., Ivics Z., Plasterk R.H. 2000. Sleeping Beauty, a wide hostrange transposon vector for genetic transformation in vertebrates. Journal of Molecular Biology, 302, 93–102. DOI:10.1006/jmbi.2000.4047.CrossRefPubMedGoogle Scholar
  12. James T.Y., Kauff F., Schoch C.L., Matheny P.B., Hofstetter V., Cox C.J., Celio G., Gueidan C., Fraker E., Miadlikowska J., Lumbsch H.T., Rauhut A., Reeb V., Arnold A.E., Amtoft A., Stajich J.E., Hosaka K., Sung G.H., Johnson D., O’Rourke B., Crockett M., Binder M., Curtis J.M., Slot J.C., Wang Z., Wilson A.W., Schmitt I., Schultz M., Yahr R., Hibbett D.S., Lutzoni F., McLaughlin D.J., Spatafora J.W., Vilgalys R. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 443, 818–822. DOI: 10.1038/nature05110.CrossRefPubMedGoogle Scholar
  13. Keane T.M., Creevey C.J., Pentony M.M., Naughton T.J., McInerney J.O. 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary Biology, 6, 29. DOI: 10.1186/1471-2148-6-29.CrossRefPubMedGoogle Scholar
  14. Keeling P.J. 2003. Congruent evidence from alpha-tubulin and betatubulin gene phylogenies for a zygomycete origin of mi crosporidia. Fungal Genetics and Biology, 38, 298–309. DOI:10.1016/S1087-1845(02)00537-6.CrossRefPubMedGoogle Scholar
  15. Keeling P.J., Luke M.A., Palmer J.D. 2000. Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Molecular Biology and Evolution, 17, 23–31.PubMedGoogle Scholar
  16. Langin T., Capy P., Daboussi M.J. 1995. The transposable element impala, a fungal member of the Tc1-mariner superfamily. Molecular and General Genetics, 246, 19–28. DOI: 10.1007/BF00290129.CrossRefPubMedGoogle Scholar
  17. Lee S.C., Corradi N., Byrnes E.J., Torres-Martinez S., Dietrich F.S., Keeling P.J., Heitman J. 2008. Microsporidia evolved from ancestral sexual fungi. Current Biology, 18, 1–5. DOI:10.1016/j. cub.2008.09.030.CrossRefGoogle Scholar
  18. Li F., Wang Y. 2006. The Comparison of DNA Extraction Methods of Microsporidia. Guangdong Sericulture, 40, 32–34.Google Scholar
  19. Liao L.W., Rosenzweig B., Hirsh D. 1983. Analysis of a transposable element in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 80, 3585–3589. DOI: 10.1073/pnas.80.12.3585.CrossRefGoogle Scholar
  20. Mittleider D., Green L.C., Mann V.H., Michael S.F., Didier E.S., Brindley P.J. 2002. Sequence survey of the genome of the opportunistic microsporidian pathogen, Vittaforma corneae. Journal of Eukaryotic Microbiology, 49, 393–401. DOI:10.1111/j.1550-7408.2002.tb00218.x.CrossRefPubMedGoogle Scholar
  21. Plasterk R.H.A., Luenen H.G.A.M. 2002. The Tc1/Mariner family of transposable elements. In: (Eds. N.L. Craig, R. Craigie, M. Geller and A.M. Lambowitz) Mobile DNA II. ASM Press, Washington DC, 519–532.Google Scholar
  22. Robertson H.M. 2002. Evolution of DNA transposons in eukaryotes. In: (Eds. N.L. Craig, R. Craigie, M. Geller and A.M. Lambowitz) Mobile DNA II. ASM Press, Washington DC, 1093–1110.Google Scholar
  23. Rosenzweig B., Liao L.W., Hirsh D. 1983. Sequence of the C. elegans transposable element Tc1. Nucleic Acids Research, 11, 4201–4209. DOI: 10.1093/nar/11.20.7137.CrossRefPubMedGoogle Scholar
  24. Schmidt H.A., Strimmer K., Vingron M., Haeseler A. 2002. TREEPUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics, 18, 502–504. DOI: 10.1093/bioinformatics/18.3.502.CrossRefPubMedGoogle Scholar
  25. Schouten G.J., Luenen V.H., Verra N., Valerio D., Plasterk R. 1998. Transposon Tc1 of the nematode Caenorhabditis elegans jumps in human cells. Nucleic Acids Research, 26, 3013–3017. DOI: 10.1093/nar/26.12.3013.CrossRefPubMedGoogle Scholar
  26. Shao H., Tu Z. 2001. Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics, 159, 1103–1115.PubMedGoogle Scholar
  27. Sherman A.A., Dawson C., Mather H., Gilhooley Y., Li R., Mitchell D.F., Sang H. 1998. Transposition of the Drosophila element mariner into the chicken germ line. Nature Biotechnology, 16, 1050–1053. DOI: 10.1038/3497.CrossRefPubMedGoogle Scholar
  28. Silva J.C., Bastida F., Bidwell S.L., Johnson P.J., Carlton J.M. 2005. A potentially functional mariner transposable element in the protist Trichomonas vaginalis. Molecular Biology and Evolution, 22, 126–134. DOI: 10.1093/molbev/msh260.CrossRefPubMedGoogle Scholar
  29. Starr T.K., Largaespada D.A. 2005. Cancer gene discovery using the Sleeping Beauty transposon. Cell Cycle, 4, 1744–1748.PubMedGoogle Scholar
  30. Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599. DOI:10.1093/molbev/msm092.CrossRefPubMedGoogle Scholar
  31. Thomarat F., Vivares C.P., Gouy M. 2004. Phylogenetic analysis of the complete genome sequence of Encephalitozoon cuniculi supports the fungal origin of microsporidia and reveals a high frequency of fastevolving genes. Journal of Molecular Evolution, 59, 780–791. DOI: 10.1007/s00239-004-2673-0.CrossRefPubMedGoogle Scholar
  32. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882. DOI:10.1093/nar/25.24.4876.CrossRefPubMedGoogle Scholar
  33. Williams B.A.P., Lee R.C., Becnel J.J., Weiss L.M., Fast N.M., Keeling P.J. 2008. Genome sequence surveys of Brachiola algerae and Edhazardia aedis reveal microsporidia with low gene densities. BMC Genomics, 9, 200. DOI: 10.1186/1471-2164-9-200.CrossRefPubMedGoogle Scholar
  34. Wittner M. 1999. Historic perspective on the microsporidia: expanding horizons. In: (Eds. M. Wittner and L.M. Weiss) The Microsporidia and Microsporidiosis. ASM Press, Washington DC, 1–6.Google Scholar
  35. Xu J.S., Pan G.Q., Li T., Zhou Z.Y., Xiang Z.H. 2006. The varying microsporidian genome: existence of LTR retrotransposon in domesticated silkworm parasite Nosema bombycis. International Journal for Parasitology, 36, 1049–1056. DOI:10.1016/j.ijpara.2006.04.010.CrossRefPubMedGoogle Scholar
  36. Zagoraiou L., Drabek D., Alexaki S., Guy J.A., Klinakis A.G., Langeveld A., Skavdis G., Mamalaki C., Grosveld F., Savakis C. 2001. In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues. Proceedings of the National Academy of Sciences, 98, 11474–11478.CrossRefGoogle Scholar
  37. Zwaal R.R., Broeks A., Vanmeurs J., Groenen J., Plasterk R. 1993. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proceedings of the National Academy of Sciences, 90, 7431–7435. DOI: 10.1073/pnas.90.16.7431.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jinshan Xu
    • 1
  • Jie Luo
    • 2
  • Bettina Debrunner-Vossbrinck
    • 3
  • Xiaoyan Zhang
    • 1
  • Hangdeng Liu
    • 2
  • Zeyang Zhou
    • 1
    • 2
  1. 1.Laboratory of Animal BiologyChongqing Normal UniversityChongqingChina
  2. 2.Institute of Sericulture and Systems BiologySouthwest UniversityChongqingChina
  3. 3.Department of Health SciencesQuinnipiac UniversityHamdenUSA

Personalised recommendations