Acta Parasitologica

, Volume 54, Issue 4, pp 295–300 | Cite as

Occurrence of haemosporidian parasites in the paddyfield warbler, Acrocephalus agricola (Passeriformes, Sylviidae)

  • Pavel Zehtindjiev
  • Mihaela Ilieva
  • Asta Križanauskienė
  • Olga Oparina
  • Mihail Oparin
  • Staffan Bensch


The blood parasite diversity was studied in paddyfield warblers (Acrocephalus agricola) breeding in NE Bulgaria, SW Russia and S. Kazakhstan. Nine cytochrome b gene lineages were recorded, 4 belonging to Haemoproteus spp. and 5 to Plasmodium spp. The overall prevalence of haemosporidians was 33.3%. The composition of parasites varied geographically, with six lineages recorded in Russia, five lineages in Bulgaria and two lineages in Kazakhstan. Two lineages are described for the first time, i.e. ACAGR1 (belonging to Plasmodium sp. and recorded from a single bird in Russia) and ACAGR2 (belonging to Haemoproteus sp., recorded from Bulgaria and Russia). The latter lineage is the most widespread parasite in the Bulgarian population, scarce in Russia and absent in Kazakhstan. It is supposed that ACAGR2 has originated from the widespread lineage ACDUM1 differing from it by a single nucleotide. One lineage only (ACDUM2) occurs in all the three populations studied and is a nonspecific parasite known from various passerines. Six of the registered lineages have been found in a single population of A. agricola and also represent non-specific parasites occurring in a wide range of passerine birds. Their records in A. agricola may indicate the high transmission rate of these parasites in the habitats where this host co-occurs with other passerines. The variation of the composition of the haemosporidian parasite communities through the breeding range of A. agricola makes up heterogeneous selection pressures that may drive intraspecific variation in important life-history traits.


Plasmodium Haemoproteus cytochrome b lineages parasite community geographical variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Able K.P., Belthoff J.R. 1998. Rapid ‘evolution’ of migratory behaviour in the introduced house finch of eastern North America. Proceedings of the Royal Society of London, Ser. B, 265, 2063–2071. DOI: 10.1098/rspb.1998.0541.CrossRefGoogle Scholar
  2. Beadell J.S., Ishtiaq F., Covas R., Melo M., Warren B.H., Atkinson C.T., Bensch S., Graves G.R., Jhala Y.V., Peirce M.A., Rahmani A.R., Fonseca D.M., Fleischer R.C. 2006. Global phylogeographic limits of Hawaii’s avian malaria. Proceedings of the Royal Society of London, Ser. B, 273, 2935–2944. DOI:10.1098/rspb.2006.3671.CrossRefGoogle Scholar
  3. Bensch S., Åkesson S. 2003. Temporal and spatial variation of hematozoans in Scandinavian willow warblers. Journal of Parasitology, 89, 388–391. DOI: 10.1645/0022-3395(2003)089[0388:TASVOH]2.0.CO;2.CrossRefPubMedGoogle Scholar
  4. Bensch S., Hellgren O., Pérez-Tris J. 2009. MalAvi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources, in press. DOI: 10.1111/j.1755-0998.2009.02692.x.Google Scholar
  5. Bensch S., Pérez-Tris J., Waldenström J., Hellgren O. 2004. Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation? Evolution, 58, 1617–1621.10.1111/j.0014-3820.2004.tb01742.x.PubMedGoogle Scholar
  6. Bensch S., Stjernman M., Hasselquist D., Ostman O., Hansson B., Westerdahl H., Pinheiro R.T. 2000. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London, Ser. B, 267, 1583–1589.10.1098/rspb.2000.1181.CrossRefGoogle Scholar
  7. Berthold P., Helbig A.J., Mohr G., Querner U. 1992. Rapid microevolution of migratory behaviour in a wild bird species. Nature, 360, 668–669. DOI: 10.1038/360668a0.CrossRefGoogle Scholar
  8. Cramp S. 1992. Handbook of the birds of Europe, the Middle East and North Africa. Vol. VI. Oxford University Press, Oxford, UK, 146–155.Google Scholar
  9. Dontschev S. 1970. Der Feldrohrsänger — Acrocephalus agricola (Jerdon, 1845) — eine neue Art für die Bulgarische Vogelfauna. Bulletin de l’Institut de Zoologie et Musée, 32, 181–183 (In Bulgarian).Google Scholar
  10. Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor v. 5.0.9. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  11. Hellgren O., Waldenström J., Bensch S. 2004. A new PCR assay for simultaneous studies of Leucocytozoon spp., Plasmodium spp. and Haemoproteus spp. from avian blood. Journal of Parasitology, 90, 797–802. DOI: 10.1645/GE-184R1.CrossRefPubMedGoogle Scholar
  12. Kumar S., Tamura K., Nei M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics, 5, 150–163. DOI:10.1093/bib/5.2.150.CrossRefPubMedGoogle Scholar
  13. Losos J.B., Warheitt K.I., Schoener T.W. 1997. Adaptive differentiation following experimental island colonization in Anolis lizards. Nature, 387, 70–73. DOI: 10.1038/387070a0.CrossRefGoogle Scholar
  14. Nadler T., Ihle U. 1988. Beobachtungen am Feldrohrsager Acrocephalus agricola in Bulgarien. Limicola, 2, 204–217.Google Scholar
  15. Orr M.R., Smith T.B. 1998. Ecology and speciation. Trends in Ecology and Evolution, 13, 502–506. DOI: 10.1016/S0169-5347(98)01511-0.CrossRefGoogle Scholar
  16. Palinauskas V., Kosarev V., Shapoval A., Bensch S., Valkiūnas G. 2007. Comparison of mitochondrial cytochrome b lineages and morphospecies of two avian malaria parasites of the subgenera Haemamoeba and Giovannolaia (Haemosporida: Plasmodiidae). Zootaxa, 1626, 39–50.Google Scholar
  17. Paspaleva M., Talpeanu M. 1980. Considèrations sur les populations de passèriformes du delta du Danube. I. Populations de passèriformes des roselières. Travers du Museum da Histoire Naturale Grigore Antipa, 21, 227–248.Google Scholar
  18. Perez-Tris J., Bensch S., Carbonell R., Helbig A.J., Tellería J.L. 2004. Historical diversification of migration patterns in a passerine bird. Evolution, 58, 1819–1832. DOI: 10.1554/03-731.CrossRefPubMedGoogle Scholar
  19. Reullier J., Pérez-Tris J., Bensch S., Secondi J. 2006. Diversity, distribution and exchange of blood parasites meeting at an avian moving contact zone. Molecular Ecology, 15, 753–763. DOI: 10.1111/j.1365-294X.2005.02826.x.CrossRefPubMedGoogle Scholar
  20. Richardson D.S., Jury F.L., Blaakmeer K., Komdeur J., Burke T. 2001. Parentage assignment and extra-group paternity in a cooperative breeder: the Seychelles warbler (Acrocephalus sechellensis). Molecular Ecology, 10, 2263–2273. DOI:10.1046/j.0962-1083.2001.01355.x.CrossRefPubMedGoogle Scholar
  21. Valkiūnas G. 2001. Practical importance of parasitic diseases: An outlook from the point of view of ecological parasitology. Ekologiya, no. 3, 28–32.Google Scholar
  22. Valkiūnas G., Iezhova T.A. 2001. A comparison of the blood parasites in three subspecies of the Yellow Wagtail Motacilla flava. Journal of Parasitology, 87, 930–934. DOI: 10.1645/0022-3395(2001)087[0930:ACOTBP]2.0.CO;2.CrossRefPubMedGoogle Scholar
  23. Valkiūnas G., Iezhova T.A., Krizanauskiene A., Palinauskas V., Sehgal R.N., Bensch S. 2008. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. Journal of Parasitology, 94, 1395–1401. DOI: 10.1645/GE-1570.1.CrossRefPubMedGoogle Scholar
  24. Valkiūnas G., Zehtindjiev P., Dimitrov D., Krizanauskiene A., Iezhova T.A., Bensch S. 2007. Polymerase chain reaction-based identification of Plasmodium (Huffia) elongatum, with remarks on species identity of haemosporidian lineages deposited in GenBank. Parasitology Research, 102, 1185–1193. DOI: 10.1007/s00436-008-0892-9.CrossRefGoogle Scholar
  25. Voinstvenskiy M. 1960. The birds of the steppe zone of the European part of the USSR. Publishing House of Ukrainian SSR Academy of Sciences, Kiev, 1–292 (In Russian).Google Scholar
  26. Waldenström J., Bensch S., Hasselquist D., Ostman O. 2004. A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. Journal of Parasitology, 90, 191–194. DOI: 10.1645/GE-3221RN.CrossRefPubMedGoogle Scholar
  27. Waldenström J., Bensch S., Kiboi S., Hasselquist D., Ottosson U. 2002. Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Molecular Ecology, 11, 1545–1554. DOI: 10.1046/j.1365-294X.2002.01523.x.CrossRefPubMedGoogle Scholar
  28. Westerdahl H., Waldenström J., Hansson B., Hasselquist D., von Schantz T., Bensch S. 2005. Associations between malaria and MHC genes in a migratory songbird. Proceedings of the Royal Society of London, Ser. B, 272, 1511–1518. DOI: 10.1098/rspb.2005.3113.CrossRefGoogle Scholar
  29. Zehtindjiev P., Ilieva M., Westerdahl H., Hansson B., Valkiūnas G., Bensch S. 2008. Dynamics of parasitemia of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler Acrocephalus arundinaceus. Experimental Parasitology, 119, 99–110. DOI:10.1016/j.exppara.2007.12.018.CrossRefPubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pavel Zehtindjiev
    • 1
  • Mihaela Ilieva
    • 1
  • Asta Križanauskienė
    • 2
  • Olga Oparina
    • 3
  • Mihail Oparin
    • 3
  • Staffan Bensch
    • 4
  1. 1.Institute of ZoologyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of EcologyVilnius UniversityVilniusLithuania
  3. 3.A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of Sciences, Saratov BranchSaratovRussia
  4. 4.Department of EcologyLund UniversityLundSweden

Personalised recommendations