Acta Parasitologica

, Volume 54, Issue 2, pp 131–142 | Cite as

Ultrastructure and cytochemistry of vitellogenesis in Wenyonia virilis Woodland, 1923 (Cestoda, Caryophyllidea)

  • Zdzisław Świderski
  • Daniel Młocicki
  • John S. Mackiewicz
  • Jordi Miquel
  • Mohammed H. Ibraheem
  • Magdalena Bruňanská


Vitellogenesis in Wenyonia virilis was examined by transmission electron microscopy (TEM), including the cytochemical detection of glycogen at the ultrastructural level with the periodic acid-thiosemicarbazide-silver proteinate (PA-TSC-SP) technique. Mature vitelline follicles have cells in various stages of development, progressing from immature cells of gonial type near the periphery of the follicle to maturing and mature vitellocytes towards the centre. Maturation is characterized by: (1) increase in cell volume; (2) increase in nuclear surface area restoring the N/C (nucleo-cytoplasmic) ratio; (3) nucleolar transformation; (4) extensive development of parallel cisternae of GER, the shell-protein producing units; (5) development of Golgi complexes, engaged in shell-granule/shell-globule formation and packaging; (6) synthesis and storage of glycogen in the cytoplasm; (7) simultaneous, independent formation and storage of intranuclear glycogen; (8) continuous fusion of small shell-granules into larger shell-globules and fusion of these into large shell-globule clusters with a progressive increase in the number and size of the latter; and (9) disintegration of GER in the medial layer of vitellocyte cytoplasm, degenerative changes and accumulation of glycogen and shell-globule clusters within the cytoplasm. The functional significance of numerous shell-globule clusters and the relatively small amount of nuclear and cytoplasmic glycogen is analysed. Unlike vitellogenesis of other caryophyllids, the nuclear glycogen of mature vitellocytes in W. virilis is randomly dispersed in the nucleoplasm and never forms a high central accumulation, the so-called “nuclear vacuole”. The nutritive function of vitellocytes appears greatly reduced in W. virilis, a fact perhaps related to the intrauterine development of the early embryos. The ultrastructure of vitellogenesis in W. virilis is compared with that in other lower cestodes, both monozoic and polyzoic. Conclusions concerning interrelationships of the vitellogenesis pattern of the ultrastructural cytochemistry of mature vitellocytes of W. virilis to intrauterine embryonation, absence of uterine glands and an extensive uterus characteristic for this species, are drawn and discussed.


Caryophyllidea Wenyonia virilis vitellogenesis ultrastructure cytochemistry “nuclear vacuole” 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bovien P. 1926. Caryophyllaeidae from Java. Videnskabelige Meddeleser fra Dansk Naturhistorisk Forening i Kobenhavn, 82, 157–181.Google Scholar
  2. Bruňanská M. 1997. Proteocephalus exiguus La Rue, 1911 (Cestoda, Proteocephalidae): ultrastructure of the vitelline cells. Helminthologia, 34, 9–13.Google Scholar
  3. Ibraheem M.H., Mackiewicz J.S. 2006. Scolex development, morphology and mode of attachment of Wenyonia virilis Woodland, 1923 (Cestoidea, Caryophyllidea). Acta Parasitologica, 51, 51–58. DOI: 10.2478/s11686-006-0007-7.CrossRefGoogle Scholar
  4. Karasaki S. 1971. Cytoplasmic and nuclear glycogen synthesis in Novikoff ascites-hepatoma cells. Journal of Ultrastructure Research, 35, 181–196.PubMedCrossRefGoogle Scholar
  5. Levron C., Poddubnaya L.G., Kuchta R., Freeman M., Scholtz T. 2007. Vitellogenesis and vitelline system in the pseudophyllidean tapeworm Paraechinophallus japonicus: ultrastructural and cytochemical studies. Folia Parasitologica, 54, 43–50.PubMedGoogle Scholar
  6. Mackiewicz J.S. 1968. Vitellogenesis and egg-shell formation in Caryophyllaeus laticeps (Pallas) and Caryophyllaeides fennica (Schneider) (Cestoidea: Caryophyllidea). Zeitschrift für Parasitenkunde, 30, 18–32. DOI: 10.1007/BF00329472.PubMedCrossRefGoogle Scholar
  7. Mackiewicz J.S. 1972. Caryophyllidea (Cestoidea): a review. Experimental Parasitology, 31, 417–512. DOI: 10.1016/0014-4894(72)90103-8.PubMedCrossRefGoogle Scholar
  8. Mackiewicz J.S. 1974. Isoglaridacris calentinei n. sp. (Cestoidea: Caryophyllidea) from catostomid fish in western United States. Transactions American Microscopical Society, 93, 143–147. DOI: 10.2307/3225234.CrossRefGoogle Scholar
  9. Mackiewicz J.S 1976. Glaridacris vogei n. sp. (Cestoidea: Caryophyllidea) from catostomid fishes in western North America. Transactions American Microscopical Society, 95, 92–97. DOI: 10.2307/3225357.CrossRefGoogle Scholar
  10. Mackiewicz J.S. 1981. Caryophyllidea (Cestoidea): evolution and classification. Advances in Parasitology, 19, 139–206. DOI: 10.1016/S0065-308X(08)60267-5.CrossRefGoogle Scholar
  11. Mackiewicz J.S. 2003. Caryophyllidea (Cestoidea): molecules, morphology and evolution. Acta Parasitologica, 48, 143–154.Google Scholar
  12. Mackiewicz J.S., Blair D. 1980. Caryoaustralus gen. n. and Tholophyllaeus gen. n. (Lytocestidae) and other caryophyllid cestodes from Tandanus spp. (Siluriformes) in Australia. Proceedings of the Helmintholological Society of Washington, 47, 168–178.Google Scholar
  13. Miquel J., Świderski Z., Mackiewicz J.S., Ibraheem M.H. 2008. Ultrastructure of spermiogenesis in the caryophyllidean cestode Wenyonia virilis Woodland, 1923, with re-assessment of flagellar rotation in Glaridacris catostomi Cooper, 1920. Acta Parasitologica, 53, 19–29. DOI: 10.2478/s11686-008-0013-z.CrossRefGoogle Scholar
  14. Mokhtar-Maamouri F., Świderski Z. 1976. Vitellogenese chez Echeneibothrium beauchampi Euzet, 1959 (Cestoda: Tetraphyllidea, Phyllobothriidae). Zeitschrift für Parasitenkunde, 50, 293–302.PubMedGoogle Scholar
  15. Oros M., Hanzelova V., Scholz T., Mackiewicz J.S. 2008. Phylogenetic relationships of the monozoic tapeworms (Eucestoda: Caryophyllidea) inferred from morphological characters. Systematic Parasitology, 70, 1–14. DOI: 10.1007/s11230-008-9133-y.PubMedCrossRefGoogle Scholar
  16. Ortner-Schönbach P. 1913. Zur Morphologie des Glykogens bei Trematoden und Cestoden. Archivs für Zellforschung, 11, 413–449.Google Scholar
  17. Poddubnaya L.G., Mackiewicz J.S., Świderski Z., Bruňanská M., Scholz T. 2005. Fine structure of egg-forming complex ducts, eggshell formation and supporting neuronal plexus in progenetic Diplocotyle olrikii (Cestoda: Spathebothriidea). Acta Parasitologica, 50, 292–304.Google Scholar
  18. Świderski Z. 1994a. Origin, differentiation and ultrastructure of egg envelopes surrounding the coracidia of Bothriocephalus clavibothrium (Cestoda, Pseudophyllidea). Acta Parasitologica, 39, 73–81.Google Scholar
  19. Świderski Z. 1994b. Origin, differentiation and ultrastructure of egg envelopes surrounding the miracidia of Schistosoma mansoni. Acta Parasitologica, 39, 64–72.Google Scholar
  20. Świderski Z., Bruňanská M., Poddubnaya L.G. 2004a. Ultrastructural and cytochemical studies on vitellogenesis in caryophyllidean cestode Caryophyllaeus laticeps. Proceedings of the 9th European Multicolloquium of Parasitology, Valencia, Spain, 18–23 July, 2004, 602.Google Scholar
  21. Świderski Z., Bruňanská M., Poddubnaya L.G., Mackiewicz J.S. 2002. Ultrastructural and cytochemical studies on vitellogenesis in caryophyllidean cestode Khawia armeniaca (Cholodkovski, 1915). Acta Parasitologica, 49, 16–24.Google Scholar
  22. Świderski Z., Eklu-Natey R.D, Subilia L., Huggel H. 1978. Fine structure of the vitelline cells in the cestode Proteocephalus longicollis (Proteocephalidea). Proceedings, 9th International Congress on Electron Microscopy, Toronto, Canada, 442–443.Google Scholar
  23. Świderski Z., Huggel H., Schönnenberger N. 1970a. The role of the vitelline cell in the capsule formation during embryogenesis in Hymenolepis diminuta (Cestoda). Proceedings, 7th International Congress of Electron Microscopy, Grenoble, France, 669–670.Google Scholar
  24. Świderski Z., Huggel H., Schönnenberger N. 1970b. Comparative fine structure of vitelline cells in cyclophyllidean cestodes. Proceedings, 7th International Congress of Electron Microscopy, Grenoble, France, 825–826.Google Scholar
  25. Świderski Z., Mackiewicz J.S. 1976. Electron microscope study of vitellogenesis in Glaridacris catostomi (Cestoidea: Caryophyllidea). International Journal for Parasitology, 6, 61–73. DOI: 10.1016/0020-7519(76)90011-4.PubMedCrossRefGoogle Scholar
  26. Świderski Z., Mackiewicz J.S. 2007a. Ovoviviparity in cestode parasites of fishes. Proceedings, 7th International Symposium on Fish Parasites, Viterbo, Italy, September 24–28, 2007. In: Parassitologia, 49 (Suppl.), 393.Google Scholar
  27. Świderski Z., Mackiewicz J.S. 2007b. Ultrastructure of polylecithal and oligolecithal eggs of cestode parasites of fishes: comparative TEM study. Proceedings, 7th International Symposium on Fish Parasites, Viterbo, Italy, September 24–28, 2007. In: Parassitologia, 49 (Suppl.), 394.Google Scholar
  28. Świderski Z., Miquel J., Młocicki D., Neifar L., Grytner-Zięcina B., Mackiewicz J.S. 2006a. Ultrastructural and cytochemical studies on vitellogenesis in trypanorhynch cestode Dollfusiella spinulifera Beveridge, Neifar et Euzet, 2004 (Eutetrarhynchidae). Acta Parasitologica, 51, 182–193. DOI: 10.2478/s11686-006-0029-1.CrossRefGoogle Scholar
  29. Świderski Z., Miquel J., Młocicki D., Neifar L., Grytner-Zięcina B., Mackiewicz J.S. 2006b. Ultrastructure of vitellocytes in the cestode Progrillotia pastinacae Dollfus, 1946 (Trypanorhyncha, Progrillotiidae). Acta Parasitologica, 51, 194–199. DOI: 10.2478/s11686-006-0030-8.CrossRefGoogle Scholar
  30. Świderski Z., Miquel J., Neifar L., Mackiewicz J.S. 2007. Ultrastructural and cytochemical studies on vitellogenesis in the trypanorhynch cestode Parachristianella trygonis Dollfus, 1946 (Eutetrarhynchidae). Acta Parasitologica, 52, 114–126. DOI: 10.2478/s11686-007-0020-5.CrossRefGoogle Scholar
  31. Świderski Z., Mokhtar F. 1974. Étude de la vitellogénèse de Bothriocephalus clavibothrium Ariola, 1899 (Cestoda: Pseudophyllidea). Zeitschrift für Parasitenkunde, 43, 135–149. DOI: 10.1007/BF00328851.PubMedCrossRefGoogle Scholar
  32. Świderski Z., Ndiaye P.I., Miquel J. 2004b. Electron microscopy studies on egg formation and ultrastructure of the unembryonated, intrauterine eggs of Fasciola gigantica Cobbold, 1856 (Trematoda, Digenea). Proceedings of the 9th European Multicolloquium of Parasitology, Valencia, Spain, 18–23 July, 2004, 604.Google Scholar
  33. Świderski Z., Xylander W.E.R. 1998. Types of vitellocytes and vitellogenesis in the Cestoda in relation to different types of embryonic development, ovoviviparity and life cycle. Wiadomości Parazytologiczne, 44, 604.Google Scholar
  34. Świderski Z., Xylander W.E.R. 2000. Vitellocytes and vitellogenesis in cestodes in relation to development, egg production and life cycle. International Journal for Parasitology, 30, 805–817. DOI: 10.1016/S0020-7519(00)00066-7.PubMedCrossRefGoogle Scholar
  35. Thiery J.P. 1967. Mise en evidence de polysaccharides sur coupes fines en microscopie electronique. Journal de Microscopie, Paris, 6, 987–1018.Google Scholar
  36. Wiśniewski L.W. 1932. Cyatocephalus truncatus Pallas. II. Allgemeine Morphologie. Mémoires de l’Academie Polonaise des Sciences et des Lettres, Class des Sciences Mathématiques et Naturelles, Sér. B, Sciences Naturelles, II,2, 311–327.Google Scholar
  37. Woodland W.N.F. 1923. On some remarkable new forms of Caryophyllaeidae from the Anglo-Egyptian Sudan, and a revision of the families of the Cestodaria. Quarterly Journal of Microscopical Science (New Series), 67, 435–472.Google Scholar
  38. Woodland W.N.F. 1926. On the genera and possible affinities of the Caryophyllaeidae: a reply to Drs. O. Fuhrman and J.G. Baer. Proceedings of the Zoological Society of London, 1926, 49–69.Google Scholar
  39. Xylander W.E.R. 1987. Ultrastructural studies on the reproductive system of Gyrocotylidea and Amphilinidea (Cestoda): II. Vitellarium, vitellocyte development and vitelloduct of Gyrocotyle urna. Zoomorphology, 107, 293–297. DOI: 10.1007/BF00312175.CrossRefGoogle Scholar
  40. Xylander W.E.R. 1988. Ultrastructural studies on the reproductive system of Gyrocotylidea and Amphilinidea (Cestoda). I. Vitellarium, vitellocyte development and vitelloduct of Amphilina foliacea. Parasitology Research, 74, 363–370. DOI: 10.1007/BF00539459.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Zdzisław Świderski
    • 1
    • 2
  • Daniel Młocicki
    • 1
    • 3
  • John S. Mackiewicz
    • 4
  • Jordi Miquel
    • 5
  • Mohammed H. Ibraheem
    • 6
  • Magdalena Bruňanská
    • 7
  1. 1.W. Stefański Institute of ParasitologyPolish Academy of SciencesWarsawPoland
  2. 2.Department of General Biology and ParasitologyMedical University of WarsawWarsawPoland
  3. 3.Department of Medical BiologyMedical University of WarsawWarsawPoland
  4. 4.Department of Biological SciencesState University of New York at AlbanyAlbanyUSA
  5. 5.Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de FarmàciaUniversitat de BarcelonaBarcelonaSpain
  6. 6.Department of Zoology, Faculty of ScienceMinia UniversityEl-MiniaEgypt
  7. 7.Institute of ParasitologySlovak Academy of SciencesKošiceSlovak Republik

Personalised recommendations