Acta Parasitologica

, 54:165 | Cite as

Anti-Pentatrichomonas hominis activity of newly synthesized benzimidazole derivatives — in vitro studies

  • Lidia Chomicz
  • Marcin Padzik
  • Agnieszka E. Laudy
  • Mariola Kozłowska
  • Anna Pietruczuk
  • Janusz Piekarczyk
  • Nadine Godineau
  • Gabriela Olędzka
  • Zygmunt Kazimierczuk


Pentatrichomonas hominis, a parasitic protozoan often detected in human diarrheic stools, is the cause of severe morbidity in newborns and children, particularly in tropical zones. The flagellate is resistant to many disinfectants and anti-protozoan drugs. Therefore in this study we have synthesized three novel 4,5,6,7-tetrabromobenzimidazole (TBBI) derivatives carrying a polyfluoroalkyl substituent in position 2 of the benzimidazole scaffold, namely 2-trifluoromethyl-TBBI (CF3-TBBI), 2-nonafluorobutyl-TBBI (C4F9-TBBI), and 2-nonadecafluorononyl-TBBI (C9F19-TBBI), that next we tested for their in vitro activity against P. hominis.Widely applied anti-protozoal drug, metronidazole as a reference was used. All the investigated agents were added to 24 h P. hominis cultures; each of them was administered at three different concentrations. Number of the moving trichomonads was determined and compared with the control cultures. Different anti-trichomonal activity occurred depending on a kind of compound and its concentration. C4F9-TBBI was the most effective TBBI derivative tested: the agent, at the highest concentration 24.2 μg/ml, after 72 h reduced the number of viable trichomonads to 44.3%; C9F19-TBBI, at the concentration 24 μg/ml reduced the number of the flagellates to 58.5%. Paradoxically, metronidazole after the same time given at the highest concentration increased trophozoite counts by 464.6% in comparison with the control cultures (100%).


Pentatrichomonas hominis benzimidazole derivatives metronidazole anti-trichomonal activity 


  1. Al-Dabagh M.A., Shafiq M.A. 1970. Pathogenicity of Trichomonas hominis to splenectomized rats. Transactions of the Royal Society of Tropical Medicine and Hygiene, 64, 826–828. DOI:10.1016/0035-9203(70)90100-8.PubMedCrossRefGoogle Scholar
  2. Alunni Bistocchi G., De Meo G., Pedini M., Ricci A., Bastianini L., Sposini T., Sbaraglia G., Jacquignon P. 1986. New heterocyclic derivatives of benzimidazole with germicidal activity. III. Synthesis and activity of derivatives of (formyl-5′-furyl-2′)-2 benzimidazole with different substitutions at position 5. Farmaco-edizione Scientifica, 41, 970–983.PubMedGoogle Scholar
  3. Andrzejewska M., Pagano M.A., Meggio F., Brunati A.M., Kazimierczuk Z. 2003. Polyhalogenobenzimidazoles: Synthesis and their inhibitory activity against casein kinases. Bioorganic & Medical Chemistry, 11, 3997–4002. DOI: 10.1016/S0968-0896(03)00403-6.CrossRefGoogle Scholar
  4. Andrzejewska M., Yépez-Mulia L., Cedillo-Rivera R., Tapia A., Vilpo L., Vilpo J., Kazimierczuk Z. 2002. Synthesis, antiprotozoal and anticancer activity of substituted 2-trifluoromethyland 2-pentafluoroethylbenzimidazoles. European Journal of Medicinal Chemistry, 37, 973–978. DOI: 10.1016/S0223-5234(02)01421-6.PubMedCrossRefGoogle Scholar
  5. Blaha C., Duchêne M., Aspöck H., Walochnik J. 2006. In vitro activity of hexadecylphosphocholine (miltefosine) against metro-nidazole-resistant and susceptible strains of Trichomonas vaginalis. Journal of Antimicrobial Chemotherapy, 57, 273–278. DOI: 10.1093/jac/dki417.PubMedCrossRefGoogle Scholar
  6. Borchardt K.A., Li Z., Zhang M.Z., Shing H. 1996. An in vitro metronidazole susceptibility test for trichomoniasis using the InPouch TV test. Genitourinary Medicine, 72, 132–135.PubMedGoogle Scholar
  7. Büchel K.H. 1970. Inhibitors of photosynthesis. V. Herbicidal trifluoromethyl-benzimidazoles. Zeitschrift für Naturforschung, 25b, 934–944.Google Scholar
  8. Cedillo-Rivera R., Chávez B., González-Robles A., Tapia A., Yépez-Mulia L. 2002. In vitro effect of nitazoxanide against Entamoeba histolytica, Giardia intestinalis and Trichomonas vaginalis trophozoites. Journal of Eukaryotic Microbiology, 49, 201–208. DOI: 10.1368/1066-5234(2002)049[0201:IVECONA]2.0.CO;2.PubMedCrossRefGoogle Scholar
  9. Cedillo-Rivera R., Muñoz O. 1992. In-vitro susceptibility of Giardia lamblia to albendazole, mebendazole and other chemotherapeutic agents. Journal of Medical Microbiology, 37, 221–224.PubMedCrossRefGoogle Scholar
  10. Chomicz L., Żebrowska J., Piekarczyk J., Starościak B., Myjak P., Walski M., Kazimierczuk Z. 2005. In vitro studies on susceptibility of Acanthamoeba castellanii to selected chemical agents. Acta Parasitologica, 50, 25–31.Google Scholar
  11. Chomicz L., Żebrowska J., Zawadzki P., Myjak P., Perkowski K., Rebandel H., Kazimierczuk Z. 2004. Badania nad wrażliwością Trichomonas hominis na czynniki abiotyczne. I. Wstępna ocena przeżywalności wiciowców w wybranych mediach w warunkach in vitro. Wiadomości Parazytologiczne, 50, 405–409.PubMedGoogle Scholar
  12. Chunge R.N., Simwa J.M., Karumba P.N., Kenya P.R., Kinoti S.N., Mattunga J., Nagelkerke N. 1992. Comparative aetiology of childhood diarrhoea in Kakamega and Kiambu Districts, Kenya. East African Medical Journal, 69, 437–441.PubMedGoogle Scholar
  13. Crucitti T., Abdellati S., Ross D.A., Changalucha J., van Dyck E., Buve A. 2004. Detection of Pentatrichomonas hominis DNA in biological specimens by PCR. Letters in Applied Microbiology, 38, 510–516. DOI: 10.1111/j.1472-765X.2004.01528.x.PubMedCrossRefGoogle Scholar
  14. Górska A., Chomicz L., Żebrowska J., Myjak P., Augustynowicz-Kopeć E., Zwolska Z., Piekarczyk J., Rebandel H., Kazimierczuk Z. 2006. Synthesis and antimycobacterial and antiprotozoal activities of some novel nitrobenzylated heterocycles. Zeitschrift für Naturforschung, 61b, 101–107.Google Scholar
  15. Guillaume V. 2007. Biologie Medicale Pratique. Parasitologie. De Boek & Lacier, Bruxelles, Belgie, 183 pp.Google Scholar
  16. Honigberg B.M. 1990. Trichomonad found outside the urogenital tract of humans. In: (Ed. B.M. Honigberg) Trichomonads Parasitic in Humans. Springer-Verlag, New York, 342–393.Google Scholar
  17. Ings R.M., McFadzean J.A., Ormerod W.E. 1974. The mode of action of metronidazole in Trichomonas vaginalis and other microorganisms. Biochemical Pharmacology, 23, 1421–1429. DOI: 10.1016/0006-2952(74)90362-1.PubMedCrossRefGoogle Scholar
  18. Jacobsen E.B., Friis-Moller A., Friis J. 1987. Trichomonas species in a subhepatic abscess. European Journal of Clinical Microbiology and Infectious Diseases, 6, 296–297. DOI: 10.1007/BF02017616.CrossRefGoogle Scholar
  19. Jongwutiwes S., Silachamroon U., Putaporntip C. 2000. Pentatrichomonas hominis in empyema thoracis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 94, 185–186. DOI: 10.1016/S0035-9203(00)90270-0.PubMedCrossRefGoogle Scholar
  20. Kasten J.M. 1999. Clindamycin, metronidazole and chloramphenicol. Mayo Clinic Proceedings, 74, 825–833. DOI: 10.4065/74.8.825.PubMedCrossRefGoogle Scholar
  21. Kazimierczuk Z., Upcroft J.A., Upcroft P., Górska A., Starościak B., Laudy A. 2002. Synthesis, antiprotozoal and antibacterial activity of nitro- and halogeno-substituted benzimidazole derivatives. Acta Biochimica Polonica, 49, 185–195.PubMedGoogle Scholar
  22. Kopańska K., Najda A., Żebrowska J., Chomicz L., Piekarczyk J., Myjak P., Brenner M. 2004. Synthesis and activity of 1H-benzimidazole and 1H-benzotriazole derivatives as inhibitors of Acanthamoeba castellanii. Bioorganic & Medicinal Chemistry, 12, 2617–2624. DOI: 10.1016/j.bmc.2004.03.022.CrossRefGoogle Scholar
  23. Kulda J. 1999. Trichomonads, hydrogenosomes and drug resistance. International Journal for Parasitology, 29, 199–212. DOI: 10.1016/S0020-7519(98)00155-6.PubMedCrossRefGoogle Scholar
  24. Land K.M., Johnson P.J. 1999. Molecular basis of metronidazole resistance in pathogenic bacteria and protozoa. Drug Resistance Updates, 2, 289–294. DOI: 10.1054/drup.1999.0104.PubMedCrossRefGoogle Scholar
  25. Mancilla-Ramirez J., Gonzalez-Yunes R. 1989. Diarrhea associated with Trichomonas hominis in a newborn infant. Boletin Medico del Hospital Infantil de Mexico, 46, 623–625.PubMedGoogle Scholar
  26. Meingassner J.G., Thurner J. 1979. Strain of Trichomonas vaginalis resistant to metronidazole and other 5-nitroimidazoles. Antimicrobial Agents and Chemotherapy, 15, 254–257.PubMedGoogle Scholar
  27. Meri T., Jokiranta T.S., Suhonen L., Meri S. 2000. Resistance of Trichomonas vaginalis to metronidazole: report of the first three cases from Finland and optimization of in vitro susceptibility testing under various oxygen concentrations. Journal of Clinical Microbiology, 38, 763–767.PubMedGoogle Scholar
  28. Munoz E., Castella J., Gutierrez J.F. 1998. In vivo and in vitro sensitivity of Trichomonas gallinae to some nitroimidazole drugs. Veterinary Parasitology, 78, 239–246. DOI: 10.1016/S0304-4017(98)00164-2.PubMedCrossRefGoogle Scholar
  29. Myjak P. 1974. The use of solid medium cultures for the removal of bacteria and fungi from Entamoeba histolytica strains. Bulletin of the Institute of Maritime and Tropical Medicine in Gdynia, 25, 113–120.Google Scholar
  30. Narcisi E.M., Secor W.E. 1996. In vitro effect of tinidazole and furazolidone on metronidazole-resistant Trichomonas vaginalis. Antimicrobial Agents and Chemotherapy, 40, 1121–1125.PubMedGoogle Scholar
  31. Petersen K. 1988. Protozoological stool examinations from 1980 to 1985 in the East German district of Rostock. Angewandte Parasitologie, 29, 3–10.PubMedGoogle Scholar
  32. Rasoloson D., Tomková E., Cammack R., Kulda J., Tachezy J. 2001. Metronidazole-resistant strains of Trichomonas vaginalis display increased susceptibility to oxygen. Parasitology, 123, 45–56. DOI: 10.1017/S0031182001008022.PubMedCrossRefGoogle Scholar
  33. Reinthalter F.F., Mascher F., Klem G., Sixl W. 1988. A survey of gastrointestinal parasites in Ogun State, southwest Nigeria. Annals of Tropical Medicine and Parasitology, 82, 181–184.Google Scholar
  34. Robinson S.C. 1962. Trichomonal vaginitis resistant to metronidazole. Canadian Medical Association Journal, 86, 665.Google Scholar
  35. Saksirisampant W., Nuchprayoon S., Wiwanitkit V., Yenthakam S., Ampavasiri A. 2003. Intestinal parasitic infestations among children in an orphanage in Pathum Thani province. Journal of the Medical Association of Thailand, 86, 263–270.Google Scholar
  36. Schwebke J.R., Burgess D. 2004. Trichomoniasis. Clinical Microbiology Reviews, 17, 794–803. DOI: 10.1128/CMR.17.4.794-803.2004.PubMedCrossRefGoogle Scholar
  37. Shaio M.F., Lo H.S., Huang S.W. 1981. Trichomonas hominis: isolation and axenic cultivation. Chinese Journal of Microbiology and Immunology, 14, 73–77 (In Chinese with English summary).PubMedGoogle Scholar
  38. Sheehan D.J., Hitchcock C.A., Sibley C.M. 1999. Current and emerging azole antifungal agents. Clinical Microbiology Reviews, 12, 40–79.PubMedGoogle Scholar
  39. Upcroft J.A, Campbell R.W., Benakli K., Upcroft P., Vanelle P. 1999. Efficacy of new 5-nitroimidazoles against metronidazole-susceptible and — resistant Giardia, Trichomonas, and Entamoeba spp. Antimicrobial Agents and Chemotherapy, 43, 73–76.PubMedGoogle Scholar
  40. Wassmann C., Bruchhaus I. 2000. Superoxide dismutase reduces susceptibility to metronidazole of the pathogenic protozoan Entamoeba histolytica under microaerophilic but not under anaerobic conditions. Archives of Biochemistry and Biophysics, 376, 236–238. DOI: 10.1006/abbi.2000.1707.PubMedCrossRefGoogle Scholar
  41. Wassmann C., Hellberg A., Tannich E., Bruchhaus I. 1999. Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of ironcontaining superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. Journal of Biological Chemistry, 274, 26051–26056. DOI: 10.1074/jbc.274.37.26051.PubMedCrossRefGoogle Scholar
  42. Yang C.R., Meng Z.D., Wang X., Li Y.L., Zhang Y.X., Zhao Q.P. 1990. Diarrhoea surveillance in children aged under 5 years in a rural area of Hebei Province, China. Journal of Diarrhoeal Diseases Research, 8, 155–159.PubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lidia Chomicz
    • 1
  • Marcin Padzik
    • 1
  • Agnieszka E. Laudy
    • 2
  • Mariola Kozłowska
    • 3
  • Anna Pietruczuk
    • 2
  • Janusz Piekarczyk
    • 4
  • Nadine Godineau
    • 5
  • Gabriela Olędzka
    • 1
  • Zygmunt Kazimierczuk
    • 3
    • 6
  1. 1.Department of Medical BiologyMedical University of WarsawWarsawPoland
  2. 2.Department of Pharmaceutical MicrobiologyMedical University of WarsawWarsawPoland
  3. 3.Institute of ChemistryLife Sciences UniversityWarsawPoland
  4. 4.Clinic of Cranio-Maxillo-Facial and Oral Surgery and ImplantologyMedical University of WarsawWarsawPoland
  5. 5.Laboratoire de Parasitologie-MycologieHopital de Saint-DenisSaint-DenisFrance
  6. 6.Laboratory of Experimental PharmacologyPolish Academy of Sciences, Medical Research CenterWarsawPoland

Personalised recommendations