Acta Parasitologica

, Volume 53, Issue 4, pp 344–364 | Cite as

Eight new species of Siphoderina Manter, 1934 (Digenea, Cryptogonimidae) infecting Lutjanidae and Haemulidae (Perciformes) off Australia

Original Paper

Abstract

We report nine species, eight of which are new, of cryptogonimids belonging to Siphoderina Manter, 1934 from the intestine and pyloric caeca of five species of Lutjanidae (Lutjanus adetii, L. argentimaculatus, L. carponotatus, L. fulviflamma and L. russelli) and one species of Haemulidae (Plectorhinchus gibbosus) recovered from Heron and Lizard Islands off the Great Barrier Reef, Moreton Bay and Ningaloo Reef in Western Australia. We also report the metacercariae of two species from an atherinid fish, Atherinomorus capricornensis, from near Heron Island. Morphological analysis of the species reported here was augmented by DNA sequence analyses utilizing data from the internal transcribed spacers (ITS) 1 and 2, large subunit (LSU) and 5.8S nuclear ribosomal DNA to explore the integrity of the species and their biogeographic distributions. The analysis found strong support for the integrity of Siphoderina and found that it is the sister-taxon to Beluesca Miller et Cribb, 2007. Sequencing included multiple replicates and no intraspecific variation was observed between any of the taxa over the rDNA regions examined. Sequence data from the ITS and LSU regions were analysed with that of species of Beluesca, Caulanus Miller et Cribb, 2007, Chelediadema Miller et Cribb, 2007, Latuterus Miller et Cribb, 2007, Neometadena Hafeezullah et Siddiqi, 1970 and Retrovarium Miller et Cribb, 2007 which all also infect lutjanids or haemulids. Some closely related species of Siphoderina infect only distantly related fishes among the haemulids and lutjanids whereas others form clusters in association with clusters of closely related lutjanids. This pattern suggests a history of some co-evolutionary divergence together with significant host switching. Pseudallacanthochasmus Velasquez, 1961 is considered a synonym of Siphoderina and the new combinations S. grandispinus (Velasquez, 1961) n. comb. and S. magnivesiculum (Gaevskaya et Aljoshkina, 1985) n. comb. are proposed. As a result of the new species described here and these new combinations, Siphoderina now contains 43 species, making it by far the largest genus of the Cryptogonimidae.

Keywords

Opisthorchiata Opisthorchioidea Paracryptogonimus ribosomal DNA Siphoderina Great Barrier Reef Ningaloo Australia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiken H.M., Bott N.J., Mladineo I., Montero F.E., Nowak B.F., Hayward C.J. 2007. Molecular evidence for cosmopolitan distribution of platyhelminth parasites of tunas (Thunnus spp.). Fish and Fisheries, 8, 1–14. DOI: 10.1111/j.1467-2679.2007.00248.x.CrossRefGoogle Scholar
  2. Allen G.R. 1985. FAO species catalogue. Vol. 6. Snappers of the world. An annotated and illustrated catalogue of lutjanid species known to date. Food and Agriculture Organization of the United Nations, Rome, 208 pp.Google Scholar
  3. Connell S.D. 1998. Patterns of piscivory by resident predatory reef fish at One Tree Reef, Great Barrier Reef. Marine and Freshwater Research, 49, 25–30. DOI: 10.1071/MF97034.CrossRefGoogle Scholar
  4. Connell S.D., Kingsford M.J. 1998. Spatial, temporal and habitat related variation in the abundance of large predatory fish at One Tree Reef, Australia. Coral Reefs, 17, 49–57. DOI: 10.1007/s003380050094.CrossRefGoogle Scholar
  5. Cribb T.H., Bray R.A., Littlewood D.T.J. 2001. The nature and evolution of the association among digeneans, molluscs and fishes. International Journal for Parasitology, 31, 997–1011. DOI: 10.1016/S0020-7519(01)00204-1.PubMedCrossRefGoogle Scholar
  6. Durio W.O., Manter H.W. 1969. Some digenetic trematodes of marine fishes of New Caledonia. III. Acanthocolpidae, Haploporidae, Gyliauchenidae, and Cryptogonimidae. Journal of Parasitology, 55, 293–300. DOI: 10.2307/3277393.PubMedCrossRefGoogle Scholar
  7. Dyer W.G., Williams E.H., Bunkley-Williams L. 1992. Homalometron dowgialloi sp. n. (Homalometridae) from Haemulon flavolineatum and additional records of digenetic trematodes of marine fishes in the West Indies. Journal of the Helminthological Society of Washington, 59, 182–189.Google Scholar
  8. Fischthal J.H. 1977. Some digenetic trematodes of marine fishes from the Barrier Reef and Reef Lagoon of Belize. Zoologica Scripta, 6, 81–88.Google Scholar
  9. Fortes E., Hoffmann R.P., Scariot J. 1996. Trematódeos digenéticos de Hoplias malabaricus (Bloch, 1794) do Lago Guaíba, Porto Alegre, RS, Brasil. Revista Brasileira de Medicina Veterinaria, 18, 68–70.Google Scholar
  10. Froese R., Pauly D. 2007. FishBase. World Wide Web electronic publication. www.fishbase.org, version (05/2007).Google Scholar
  11. Gaevskaya A.V., Aljoshkina L.D. 1985. New species of trematodes from the eastern Atlantic. Parazitologiya, 19, 105–112 (In Russian).Google Scholar
  12. Gu C., Shen J. 1979. Ten new species of digenetic trematodes of marine fishes. Acta Zoologica Sinica, 4, 342–355.Google Scholar
  13. Hafeezullah M. 1975. A new cryptogonimid trematode (Digenea: Cryptogonimidae) of marine fish from Orissa Coast, with a brief review of the genus Paracryptogonimus Yamaguti, 1934. Journal of the Marine Association of India, 17, 49–55.Google Scholar
  14. Hafeezullah M., Siddiqi A.H. 1970. Digenetic trematodes of marine fishes of India. Part I. Bucephalidae and Cryptogonimidae. Indian Journal of Helminthology, 22, 1–22.Google Scholar
  15. Lamothe-Argumedo R. 1969. Tremátodos de peces. III. Cuatro especies nuevas de tremátodos parásitos de peces del Pacífico Mexicano. Anales del Instituto de Biología. Universidad Nacional Autonóma de México, Serie Zoología, 40, 21–42.Google Scholar
  16. Lester R.J.G., Sewell K.B. 1989. Checklist of parasites from Heron Island, Great Barrier Reef. Australian Journal of Zoology, 37, 101–128. DOI: 10.1071/ZO9890101.CrossRefGoogle Scholar
  17. Liu S.F. 1996. Two new species of trematodes parasitic in marine fishes from Fujian, China (Trematoda: Digenea: Cryptogonimidae). Acta Zootaxonomica Sinica, 21, 10–17 (In Chinese).Google Scholar
  18. Maddison D.R., Maddison W.P. 2005. MacClade 4: Analysis of phylogeny and character evolution. Version 4.08. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  19. Manter H.W. 1934. Some digenetic trematodes from deep-water fish of Tortugas, Florida. Carnegie Institution of Washington, 435, 257–345.Google Scholar
  20. Manter H.W. 1940. Digenetic trematodes of fishes from the Galapagos Islands and the neighboring Pacific. Allan Hancock Pacific Expeditions, 2, 325–497.Google Scholar
  21. Manter H.W. 1947. The digenetic trematodes of marine fishes of Tortugas, Florida. American Midland Naturalist, 38, 257–416. DOI: 10.2307/2421571.CrossRefGoogle Scholar
  22. Manter H.W. 1963. Studies on digenetic trematodes of fishes of Fiji. III. Families Acanthocolpidae, Fellodistomatidae, and Cryptogonimidae. Journal of Parasitology, 49, 443–450. DOI: 10.2307/3275814.CrossRefGoogle Scholar
  23. Miller T.L., Cribb T.H. 2007a. Phylogenetic relationships of some common Indo-Pacific snappers (Perciformes: Lutjanidae) based on mitochondrial DNA sequences, with comments on the taxonomic position of the Caesioninae. Molecular Phylogenetics and Evolution, 44, 450–460. DOI: 10.1016/j.ympev.2006.10.029.PubMedCrossRefGoogle Scholar
  24. Miller T.L., Cribb T.H. 2007b. Coevolution of Retrovarium n. gen. (Digenea: Cryptogonimidae) in Lutjanidae and Haemulidae (Perciformes) in the Indo-West Pacific. International Journal for Parasitology, 37, 1023–1045. DOI: 10.1016/j.ijpara.2007.01.006.PubMedCrossRefGoogle Scholar
  25. Miller T.L., Cribb T.H. 2007c. Two new cryptogonimid genera (Digenea, Cryptogonimidae) from Lutjanus bohar (Perciformes, Lutjanidae): analyses of multiple ribosomal DNA reveals wide geographic distribution and presence of cryptic species. Acta Parasitologica, 52, 104–113. DOI: 10.2478/s11686-007-0019-y.CrossRefGoogle Scholar
  26. Miller T.L., Cribb T.H. 2007d. Two new cryptogonimid genera Beluesca n. gen. and Chelediadema n. gen. (Digenea: Cryptogonimidae) from Tropical Indo-West Pacific Haemulidae (Perciformes). Zootaxa, 1543, 45–60.Google Scholar
  27. Miller T.L., Cribb T.H. 2008. Family Cryptogonimidae Ward, 1917. In: (Eds. R.A. Bray, D.I. Gibson and A. Jones) Keys to the Trematoda. Vol. 3. CAB International, Wallingford, 51–112.Google Scholar
  28. Nagaty H.F. 1957. Trematodes of fishes from the Red Sea. Part 8. Five species in the families Schistorchidae, Acanthocolpidae, and Heterophyidae. Journal of Parasitology, 43, 217–220. DOI: 10.2307/3274653.PubMedCrossRefGoogle Scholar
  29. Nahhas F.M., Tran M., Nguyen T.P. 2003. Digenetic trematodes of marine fishes from Suva, Fiji (Cryptogonimidae) including description of a new species. Acta Parasitologica, 48, 176–181.Google Scholar
  30. Nahhas F.M., Sey O., Nishimoto R. 1998. Digenetic trematodes of marine fishes from the Kuwaiti Coast of the Arabian Gulf: families Pleorchiidae, Fellodistomidae, and Cryptogonimidae, with a description of two new species, Neoparacryptogonimus sphericus and Paracryptogonimus ramadani. Journal of the Helminthological Society of Washington, 65, 129–140.Google Scholar
  31. Oshmarin P.G., Mamaev Y.L., Parukhin A.M. 1961. Two new species and genera of trematodes of the family Cryptogonimidae from fishes of the North Vietnam bay (Tonkin Bay). Helminthologia, 3, 261–266.Google Scholar
  32. Overstreet R.M. 1969. Digenetic trematodes of marine teleost fishes from Biscayne Bay, Florida. Tulane Studies in Zoology and Botany, 15, 119–176.Google Scholar
  33. Parukhin A.M. 1976. Trematodes of fish in the Indian Ocean. Biologiya Morya, Kiev, 38, 76–84 (In Russian).Google Scholar
  34. Saoud M.F.A., Ramadan M.M., Al Kawari K.S.R. 1988. Helminth parasites of fishes from the Arabian Gulf. 4. On Allacanthochasmus lutjani n. sp. and Metadena leilae Nagaty, 1957 (Digenea: Cryptogonimidae). Qatar University Science Bulletin, 8, 161–172.Google Scholar
  35. Sogandares-Bernal F. 1959. Digenetic trematodes of marine fishes from the Gulf of Panama and Bimini, British West Indies. Tulane Studies in Zoology, 7, 71–117.Google Scholar
  36. Swofford D.L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  37. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 4876–4882. DOI: 10.1093/nar/25.24.4876.CrossRefGoogle Scholar
  38. Tubangui M.A. 1928. Trematode parasites of Philippine vertebrates. Philippine Journal of Science, 36, 351–369.Google Scholar
  39. Velasquez C.C. 1961. Cryptogonimidae (Digenea: Trematoda) from Philippine food fishes. Journal of Parasitology, 47, 914–918. DOI: 10.2307/3275019.CrossRefGoogle Scholar
  40. Wang P.Q. 1991. Report on one new genus and six new species of digenetic trematode from marine fishes in Pingtan, Fujian Province. Wuyi Science Journal, 8, 131–137 (In Chinese).Google Scholar
  41. Yamaguti S. 1934. Studies on the helminth fauna of Japan. Part 2. Trematodes of fishes, I. Japanese Journal of Zoology, 5, 249–541.Google Scholar
  42. Yamaguti S. 1970. Digenetic trematodes of Hawaiian fishes. Keigaku Publishing Company, Tokyo, 436 pp.Google Scholar
  43. Yamaguti S. 1971. Synopsis of the digenetic trematodes of vertebrates. Keigaku Publishing Company, Tokyo, 1074 pp.Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Parasitology Section, School of Molecular and Microbial SciencesThe University of QueenslandBrisbaneAustralia
  2. 2.Centre for Marine StudiesThe University of QueenslandBrisbaneAustralia

Personalised recommendations