Acta Parasitologica

, Volume 53, Issue 2, pp 133–144 | Cite as

In search of mitochondrial markers for resolving the phylogeny of cyclophyllidean tapeworms (Platyhelminthes, Cestoda) — a test study with Davaineidae

  • D. Timothy J. Littlewood
  • Andrea Waeschenbach
  • Pavel N. Nikolov
Article

Abstract

The most species rich order of tapeworms is the Cyclophyllidea and prior to wide-scale sampling of these worms for phylogenetics, we wished to develop reliable PCR primers that would capture fragments of mitochondrial (mt) DNA with phylogenetic utility across the order. Nuclear ribosomal RNA gene sequences are well-established and valuable markers for resolving flatworm interrelationships spanning a wide range of taxonomic divergences, but fail to provide resolution amongst recently diverged lineages. Entire mt genomes of selected cyclophyllidean tapeworms are available on GenBank, and we used these to design PCR primers to amplify mtDNA from cox1, rrnL and nad1 for a range of cyclophyllideans (7 davaineids, 1 hymenolepidid and 1 dilepidid) and selected outgroups (Tetrabothrius sp. and Mesocestoides sp.). A combined nuclear and mt gene data set was used to estimate a reference phylogeny and the performance of the individual genes was compared to this. Although nuclear and mt genes each contributed to the structure and stability of the phylogenetic estimate, strongest nodal support was provided by nuclear data amongst the basal lineages and by mt data amongst the most recently diverged lineages. The apparent complementarity afforded by combining nuclear and mt data was compromised by these data partitions providing conflicting signal at poorly supported nodes. Nevertheless, we argue for a combined evidence approach. PCR primers that amplify rrnL were designed and tested successfully against a diversity of cyclophyllideans; rrnL and nad1 appeared to be more informative than the fragment of cox1. The genus Raillietina was not supported by molecular evidence. The new primers will likely provide considerable resolution to estimates of cyclophyllidean interrelationships in future studies.

Keywords

mtDNA phylogeny Cyclophyllidea Davaineidae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artyukh E.S. 1966. Foundations of cestodology. Vol. VI. Davaineata — helminths of wild and domestic animals. Nauka, Moscow, 511 pp. (In Russian).Google Scholar
  2. Brabec J., Kuchta R., Scholz T. 2006. Paraphyly of the Pseudophyllidea (Platyhelminthes: Cestoda): circumscription of monophyletic clades based on phylogenetic analysis of ribosomal RNA. International Journal for Parasitology, 36, 1535–1541. DOI: 10.1016/j.ijpara.2006.08.003.CrossRefPubMedGoogle Scholar
  3. Cunningham C.W. 1997. Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution, 14, 733–740.PubMedGoogle Scholar
  4. Dogel’ V.A. 1962. General Parasitology. Izdatel’stvo Leningradskogo Universiteta, 464 pp. (In Russian).Google Scholar
  5. Farris J.S., Källersjö M., Kluge A.G., Bult C. 1995. Testing significance of incongruence. Cladistics, 10, 315–319.CrossRefGoogle Scholar
  6. Foronda P., Casanova J.C., Valladares B., Martinez E., Feliu C. 2004. Molecular systematics of several cyclophyllid families (Cestoda) based on the analysis of 18S ribosomal DNA gene sequences. Parasitology Research, 93, 279–282. DOI:10.1007/s00436-004-1130-8.CrossRefPubMedGoogle Scholar
  7. Fuhrmann O. 1920. Considérations générales sur les Davainea. Festschrift für Zschokke, Basel, 27, 19 pp.Google Scholar
  8. Fuhrmann O. 1924. Questions de nomenclature concernant le genre Raillietina Fuhrmann (syn.: Davainea Bl.). Annales de Parasitologie Humaine et Comparée, 2, 312–313.Google Scholar
  9. Fuhrmann O. 1932. Les ténias des oiseaux. Mémories de l’Université de Neuchâtel, 381 pp.Google Scholar
  10. Georgiev B.B. 2003. Cestoda (Tapeworms). In: (Eds. D.A. Thoney and N. Schlager) Lower Metazoans and Lesser Deuterostomes. Grzimek’s Animal Life Encyclopedia. Second Edition. Volume 1. Gale, Detroit, 225–243.Google Scholar
  11. Hajibabaei M., Singer G.A.C., Hebert P.D.N., Hickey D.A. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics, 23, 167–172. DOI: 10.1016/j.tig.2007.02.001.CrossRefPubMedGoogle Scholar
  12. Hoberg E.P., Jones A., Bray R.A. 1999. Phylogenetic analysis among the families of the Cyclophyllidea (Eucestoda) based on comparative morphology, with new hypotheses for co-evolution in vertebrates. Systematic Parasitology, 42, 51–73.CrossRefPubMedGoogle Scholar
  13. Hoberg E.P., Mariaux J., Brooks D.R. 2001. Phylogeny among orders of the Eucestoda (Cercomeromorphae): Integrating morphology, molecules and total evidence. In: (Eds. D.T.J. Littlewood and R.A. Bray) Interrelationships of the Platyhelminthes. Taylor & Francis, London and New York, 112–126.Google Scholar
  14. Hu M., Gasser R.B., Chilton N.B., Beveridge I. 2005. Genetic variation in the mitochondrial cytochrome c oxidase subunit 1 within three species of Progamotaenia (Cestoda: Anoplocephalidae) from macropodid marsupials. Parasitology, 130, 117–129. DOI: 10.1017/S0031182007002752.CrossRefPubMedGoogle Scholar
  15. Huelsenbeck J.P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.CrossRefPubMedGoogle Scholar
  16. Hypsa V., Skerikova A., Scholz T. 2005. Phylogeny, evolution and host-parasite relationships of the order Proteocephalidea (Eucestoda) as revealed by combined analysis and secondary structure characters. Parasitology, 130, 359–371. DOI: 10.1017/S0031182004006638.CrossRefPubMedGoogle Scholar
  17. Jeffroy O., Brinkmann H., Delsuc F., Philippe H. 2006. Phylogenomics: the beginning of incongruence? Trends in Genetics, 22, 225–231. DOI: 10.1016/j.tig.2006.02.003.CrossRefPubMedGoogle Scholar
  18. Johnston D.A. 2006. Genomes and genomics of parasitic flatworms. In: (Eds. A.G. Maule and N.J. Marks) Parasitic flatworms: molecular biology, biochemistry, immunology and physiology. CAB International, Wallingford, 37–80.Google Scholar
  19. Jones A., Bray R.A. 1994. Family Davaineidae Braun, 1900. In: (Eds. L.F. Khalil, A. Jones and R.A. Bray) Keys to the cestode parasites of vertebrates. CAB International, Wallingford, 407–441.Google Scholar
  20. Kodedová I., Dolezel D., Broucková M., Jirku M., Hypsa V., Lukes J., Scholz T. 2000. On the phylogenetic positions of the Caryophyllidea, Pseudophyllidea and Proteocephalidea (Eucestoda) inferred from 18S rRNA. International Journal for Parasitology, 30, 1109–1113. DOI: 10.1016/S0020-7519(00)00090-4.CrossRefPubMedGoogle Scholar
  21. Le T.H., Blair D., McManus D.P. 2002. Mitochondrial genomes of parasitic flatworms. Trends in Parasitology, 18, 206–213. DOI: 10.1016/S1471-4922(02)02252-3.CrossRefPubMedGoogle Scholar
  22. López-Neyra C.R. 1931. Revisión del género Davainea. Obra Premiada por la Academia de Ciencias Exactas, Físicas y Naturales, de Madrid, 177 pp.Google Scholar
  23. Lowe T.M., Eddy S.R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequences. Nucleic Acids Research, 25, 955–964.CrossRefPubMedGoogle Scholar
  24. Maddison W.P., Maddison D.R. 2005. MacClade. Version 4.07. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  25. Mariaux J. 1998. A molecular phylogeny of the Eucestoda. Journal of Parasitology, 84, 114–124. DOI: 10.2307/3284540.CrossRefPubMedGoogle Scholar
  26. Movsesyan S.O. 1966. On the reorganisation of the cestodes of the genus Raillietina Fuhrmann, 1920 (Cestoda: Davaineidae). Tematicheskiy Sbornik Rabot po Gel’mintologii Sel’skokhozyaystvennykh Zhivotnykh. Kolos, Moscow, 12, 5–10 (In Russian).Google Scholar
  27. Movsesyan S.O. 2003a. Foundations of cestodology. Vol. XIII, Pt. I. Davaineata — helminths of animals and human. Nauka, Moscow, 395 pp. (In Russian).Google Scholar
  28. Movsesyan S.O. 2003b. Foundations of cestodology. Vol. XIII, Pt. II. Davaineata — helminths of animals and human. Nauka, Moscow, 262 pp. (In Russian).Google Scholar
  29. Olson P.D., Littlewood D.T.J., Bray R.A., Mariaux J. 2001. Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Molecular Phylogenetics and Evolution, 19, 443–467. DOI: 10.1006/mpev.2001.0930.CrossRefPubMedGoogle Scholar
  30. Olson P.D., Tkach V.V. 2005. Advances and trends in the molecular systematics of the parasitic Platyhelminthes. Advances in Parasitology, 60, 167–246. DOI: 10.1016/S0065-308X(05)60003-6.CrossRefGoogle Scholar
  31. Peterson A.P. 2002. Zoonomen Nomenclatural data. http://www.zoonomen.net.
  32. Posada D., Crandall K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817–818.CrossRefPubMedGoogle Scholar
  33. Rokas A., Carroll S.B. 2005. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Molecular Biology and Evolution, 22, 1337–1344. DOI: 10.1093/molbev/msi121.CrossRefPubMedGoogle Scholar
  34. Schmidt G.D. 1986. CRC handbook of tapeworm identification. CRC Press Inc., Boca Raton, Florida, 675 pp.Google Scholar
  35. Swofford D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  36. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.CrossRefPubMedGoogle Scholar
  37. van der Auwera G., Chapelle S., de Wachter R. 1994. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Letters, 338, 133–136.CrossRefPubMedGoogle Scholar
  38. von Nickisch-Rosenegk M., Lucius R., Loos-Frank B. 1999. Contributions to the phylogeny of the Cyclophyllidea (Cestoda) inferred from mitochondrial 12S rDNA. Journal of Molecular Evolution, 48, 586–596.CrossRefGoogle Scholar
  39. Waeschenbach A., Webster B.L., Bray R.A., Littlewood D.T.J. 2007. Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Molecular Phylogenetics and Evolution, 45, 311–325. DOI: 10.1016/j.ympev.2007.03.019.CrossRefPubMedGoogle Scholar
  40. Wardle R.A., McLeod J.A. 1952. The zoology of the tapeworms. University of Minnesota Press, Minneapolis, 780 pp.Google Scholar
  41. Wickström L.M., Haukisalmi V., Varis S., Hantula J., Henttonen H. 2005. Molecular phylogeny and systematics of anoplocephaline cestodes in rodents and lagomorphs. Systematic Parasitology, 62, 83–99. DOI: 10.1007/s11230-005-5488-5.CrossRefPubMedGoogle Scholar
  42. Yamaguti S. 1959. Systema helminthum. Vol. II. The cestodes of vertebrates. Interscience Publishers Inc., New York & London, 860 pp.Google Scholar
  43. Yoder A.D., Irwin J.A., Payseur B.A. 2001. Failure of the ILD to determine data combinability for slow loris phylogeny. Systematic Biology, 50, 408–424.CrossRefPubMedGoogle Scholar
  44. Zarowiecki M.Z., Huyse T., Littlewood D.T.J. 2007. Making the most of mitochondrial genomes — markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes: Digenea). International Journal for Parasitology, 37, 1401–1418. DOI: 10.1016/j.ijpara.2007.04.014.CrossRefPubMedGoogle Scholar
  45. Zehnder M.P., Mariaux J. 1999. Molecular systematic analysis of the order Proteocephalidea (Eucestoda) based on mitochondrial and nuclear rDNA sequences. International Journal for Parasitology, 29, 1841–1852. DOI: 10.1016/S0020-7519(99)00122-8.CrossRefPubMedGoogle Scholar
  46. Zwickl D.J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Thesis, The University of Texas at Austin, USA.Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • D. Timothy J. Littlewood
    • 1
  • Andrea Waeschenbach
    • 1
  • Pavel N. Nikolov
    • 2
  1. 1.Department of ZoologyNatural History MuseumLondonUK
  2. 2.Central Laboratory of General EcologyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations