Acta Parasitologica

, Volume 53, Issue 2, pp 186–192 | Cite as

Identification and characterization of 31 isolates of Borrelia burgdorferi (Spirochaetales, Spirochaetaceae) obtained from various hosts and vectors using PCR-RFLP and SDS-PAGE analysis

  • Alena Žákovská
  • Eva Janouškovcová
  • Kateřina Pejchalová
  • Jiří Halouzka
  • Miloš Dendis


Borrelia burgdorferi sensu lato, the etiologic agent of Lyme borreliosis, circulates between ticks and vertebrate hosts. Two main genospecies typically occur in the Czech Republic Borrelia garinii and Borrelia afzelii, transmitted generally by Ixodes ricinus (L., 1758) ticks. The aim of our study was to identify spirochaete isolates focusing on Borrelia burgdorferi acquired from different sources: vectors (ticks), potential vectors (mosquitoes, small mites) and hosts (wild rodents). In the years 1996–2001 a total of 2398 ticks, 72 mites (from wild rodents), 2700 mosquito adults, 1798 mosquito larvae and organ parts (kidney and spleen) of 216 wild rodents were collected from seven localities in the Czech Republic. A total of 31 spirochaete strains were isolated: 13 strains from ticks, 1 strain from mite (Haemogamasus sp.), 15 strains from rodents, 1 strain from mosquito adults and 1 strain from mosquito larva. For the genospecies identification of these isolates PCR, PCR-RFLP was used and their characterization was also performed by SDS-PAGE. By nested PCR method all except one isolated strains were detected as Borrelia burgdorferi s.l. Following PCR-RFLP molecular analysis results, tick isolates were identified as B. garinii and B. afzelii, the strain isolated from the mite was identified as B. afzelii. This is the first isolated strain of B.b.s.l. from a different mite of infraorder Parasitiformes than tick. All of rodent isolates were identified as B. afzelii; mosquito adult isolate was identified as B. afzelii. Larval isolate from mosquito is spirochaete, but does not belong to Borrelia burgdorferi sensu lato group.


Borrelia isolate PCR-RFLP SDS-PAGE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baranton G., Postic D., San Girons I., Boerlin P., Piffaretti J.C., Assous M., Grimont P.A.D. 1992. Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov. and group VS 461 associated with Lyme borreliosis. International Journal of Systematic Bacteriology, 42, 378–383.PubMedGoogle Scholar
  2. Bašta J., Plch J., Hulínská D., Daniel M. 1999. Incidence of Borrelia garinii and Borrelia afzelii in Ixodes ricinus ticks in an urban environment, Prague, Czech Republic, between 1995 and 1998. European Journal of Clinical Microbiology and Infectious Diseases, 18, 515–517.CrossRefGoogle Scholar
  3. Burgdorfer W., Barbour A.G., Hayes S.F., Benach J.L., Grunwald E., Davis J.P. 1982. Lyme disease — a tick-borne spirochetosis? Science, 216, 1317–1319. DOI: 10.1126/science.7043737.PubMedCrossRefGoogle Scholar
  4. Canica M.M., Nato F., du Merle L., Mazie J.C., Baranton G., Postic D. 1993. Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scandinavian Journal of Infectious Diseases, 25, 441–448. DOI: 10.3109/00365549309008525.PubMedCrossRefGoogle Scholar
  5. Cinco M., Padovan D., Murgia R. 1996. Detection by PCR of different species of Borrelia burgdorferi in Ixodes ricinus collected in a defined area of northern Italy. Parassitologia, 38, 378.Google Scholar
  6. Danielová V., Daniel M., Rudenko N., Golovchenko M. 2004. Prevalence of Borrelia burgdorferi sensu lato genospecies in host — seeking Ixodes ricinus ticks in selected South Bohemian locations (Czech Republic). Central European Journal of Public Health, 12, 151–156.PubMedGoogle Scholar
  7. Gray J.S., Schonberg A., Postic D., Belfaiza J., Saint-Girons I. 1996. First isolation and characterisation of Borrelia garinii, agent of Lyme borreliosis, from Irish ticks. Irish Journal of Medical Science, 165, 24–26.PubMedCrossRefGoogle Scholar
  8. Halouzka J., Postic D., Hubálek Z. 1998. Isolation of the spirochaete Borrelia afzelii from the mosquito Aedes vexans in the Czech Republic. Medical and Veterinary Entomology, 12, 103–105. DOI: 10.1046/j.1365-2915.1998.00086.x.PubMedCrossRefGoogle Scholar
  9. Halouzka J., Wilske B., Stunzner D., Sanogo Y.O., Hubálek Z. 1999. Isolation of Borrelia afzelii from overwintering Culex pipiens biotype molestus mosquitoes. Infection, 27, 275–277.PubMedCrossRefGoogle Scholar
  10. Hanincová K., Taragelová V., Kočí J., Schafer S.M., Hails R., Ullmann A.J., Piesman J., Labuda M., Kurtenbach K. 2003. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Applied and Environmental Microbiology, 69, 2825–2830. DOI: 10.1128/AEM.69.5.2825-2830.2003.PubMedCrossRefGoogle Scholar
  11. Hubálek Z., Halouzka J. 1997. Distribution of Borrelia burgdorferi sensu lato genomic groups in Europe, a review. European Journal of Epidemiology, 13, 951–957. DOI: 10.1023/A:1007426304900.PubMedCrossRefGoogle Scholar
  12. Hubálek Z., Halouzka J., Juřicová Z. 1991. A comparison of the occurrence of borreliae in nymphal and adult Ixodes ricinus ticks. Zentralblatt für Bakteriologie, 275, 133–137.PubMedGoogle Scholar
  13. Hubálek Z, Halouzka J, Juřicová Z. 1998. Investigation of haematophagous arthropods for borreliae — summarized data, 1988–1996. Folia Parasitologica, 45, 67–72.PubMedGoogle Scholar
  14. Hubálek Z., Korenberg E.I., Juřicová Z., Kovalevskiy Yu.V., Halouzka J., Scerbakov S.V. 1990. Prevalence of borreliae in Ixodes ricinus ticks from Southern Moravia, Czechoslovakia. Folia Parasitologica, 37, 359–362.PubMedGoogle Scholar
  15. Janouškovcová E., Žákovská A., Halouzka J., Dendis M. 2004. Occurrence of Borrelia afzelii and Borrelia garinii in Ixodes ricinus ticks from Southern Moravia, Czech Republic. Vector Borne and Zoonotic Diseases, 4, 43–52.PubMedCrossRefGoogle Scholar
  16. Kmety E., Řeháček J., Výrosteková V. 1986. Investigation of ticks for the presence of borrelia in Czechoslovakia. Zentralblatt für Bakteriologie, 263, 468–470.Google Scholar
  17. Kociánová E., Kožuch O. 1988. A contribution to the parasite fauna in winter nests of the common mole (Talpa europaea L.) and incidence of its infection with tick-borne encephalitis virus (TBE) and rickettsia Coxiella burnetii. Folia Parasitologica, 35, 175–180.PubMedGoogle Scholar
  18. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T. Nature, 227, 680–685. DOI: 10.1038/227680a0.PubMedCrossRefGoogle Scholar
  19. Le Fleche A., Postic D., Girardet K., Peter O., Baranton G. 1997. Characterisation of Borrelia lusitaniae sp. nov. by 16S ribosomal DNA sequence analysis. International Journal of Systematic Bacteriology, 47, 921–925.PubMedGoogle Scholar
  20. Lysý J., Nosek J., Výrosteková V., Kováčik J. 1979. Isolation of Francisella tularensis from mites Haemogamasus nidi and Laelaps hilaris in western Slovakia. Zentralblatt für Bakteriologie, 244, 324–326.Google Scholar
  21. Maetzel D., Maier W.A., Kampen H. 2004. Borellia burgdorferi infection prevalences in questing Ixodes ricinus ticks (Acari: Ixodidae) in urban and suburban Bonn, western Germany. Parasitology Research, 95, 5–12. DOI: 10.1007/s00436-004-1240-3.PubMedCrossRefGoogle Scholar
  22. Maraspin V., Cimperman J., Lotric-Furlan S., Ruzić-Sabljić E., Jurca T., Picken R.N., Strle F. 2002. Solitary borrelial lymphocytoma in adult patients. Wiener Klinische Wochenschrift, 114, 515–523.PubMedGoogle Scholar
  23. Masseguin A., Palinacci A. 1954. Parasitisme des glandes salivaires d’un Anopheles gambiae par un spirochete. Bulletin de la Société de Pathologie Exotique, 47, 3.Google Scholar
  24. Matuschka F.R., Richter D. 2002. Mosquitoes and soft ticks cannot transmit Lyme disease spirochaetes. Parasitology Research, 88, 283–284. DOI: 10.1007/s00436-001-0584-1.PubMedCrossRefGoogle Scholar
  25. Michalik J., Skotarczak B., Skoracki M., Wodecka B., Sikora B., Hofman T., Rymaszewska A., Sawczuk M. 2005. Borrelia burgdorferi sensu stricto in yellow-necked mice and feeding Ixodes ricinus ticks in a forest habitat of west central Poland. Journal of Medical Entomology, 42, 850–856.PubMedCrossRefGoogle Scholar
  26. Netušil J., Žákovská A., Horváth R., Dendis M., Janouškovcová E. 2005. Presence of Borrelia burgdorferi sensu lato in mites parasiting small rodents. Vector Borne and Zoonotic Diseases, 5, 227–232. DOI: 10.1089/vbz.2005.5.227.PubMedCrossRefGoogle Scholar
  27. Novák K. 1969. Metody sběru a preparace hmyzu. Academia, Praha (In Czech).Google Scholar
  28. O’Connell S., Granstrom M., Gray J.S., Stanek G. 1998. Epidemiology of European Lyme borreliosis. Zentralblatt für Bakteriologie, 287, 229–240.PubMedGoogle Scholar
  29. Peter O., Bretz A. 1992. Polymorphism of outer surface proteins of Borrelia burgdorferi as a tool for classification. Zentralblatt für Bakteriologie, 277, 28–33.PubMedGoogle Scholar
  30. Picken M.M., Picken R.N., Han D., Cheng Y., Strle F. 1996. Singletube nested polymerase chain reaction assay based on flagellin gene sequences for detection of Borrelia burgdorferi sensu lato. European Journal of Clinical Microbiology and Infectious Diseases, 15, 489–498.CrossRefGoogle Scholar
  31. Postic D., Garnier M., Baranton G. 2007. Multilocus sequence analysis of atypical Borrelia burgdorferi sensu lato isolates — description of Borrelia californiensis sp. nov., and genomospecies 1 and 2. International Journal of Medical Microbiology, 297, 263–271. DOI: 10.1016/j.ijmm.2007.01.006.PubMedCrossRefGoogle Scholar
  32. Richter D., Schlee D.B., Allgower R., Matuschka F.R. 2004. Relationships of a novel Lyme disease spirochete, Borrelia spielmani sp. nov., with its hosts in Central Europe. Applied and Environmental Microbiology, 70, 6414–6419. DOI: 10.1128/AEM.70.11.6414-6419.2004.PubMedCrossRefGoogle Scholar
  33. Sanogo Y.O., Halouzka J., Hubálek Z., Němec M. 2000. Detection of spirochaetes in, and isolation from, culicine mosquitoes. Folia Parasitologica 47, 79–80.PubMedGoogle Scholar
  34. Sinton J.A., Shute P.G. 1939. Spirochaetal infections of mosquitoes. Journal of Tropical Medicine and Hygiene, 9, 125–126.Google Scholar
  35. Stańczak J., Kubica-Biernat B., Racewicz M., Kruminis-Łozowska W. 1995. Occurrence of Borrelia spirochetes in haematophagous insects (Diptera, Siphonaptera, Anoplura). IX SOVE European Meeting, 4–7 September, Prague, Czech Republic. Programme and Abstract, 49.Google Scholar
  36. Stanko M., Miklišová D. 2000. Host-parasite relationships between two ectoparasite groups (Ixodida, Mesostigmata) and two rodent species in lowland ecosystem of Slovakia. In: (Eds. A. Buczek and C. Błaszak) Stawonogi pasożytnicze i alergogenne, 23–36.Google Scholar
  37. Steere A.C. 1994. Lyme disease: a growing threat to urban populations. Proceedings of the National Academy of Sciences of the United States of America, 91, 2378–2383.PubMedCrossRefGoogle Scholar
  38. Štěpánová-Tresová G., Kopecký J., Kuthejlová M. 2000a. Identification of Borrelia burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii in Ixodes ricinus ticks from Southern Bohemia using monoclonal antibodies. Zentralblatt für Bakteriologie, 289, 797–806.PubMedGoogle Scholar
  39. Štěpánová-Tresová G., Pet’ko B., Stefančiková A., Nadzamová D. 2000b. Occurrence of Borrelia burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii in the Ixodes ricinus ticks from Eastern Slovakia. European Journal of Epidemiology, 16, 105–109. DOI: 10.1023/A:1007606623892.PubMedCrossRefGoogle Scholar
  40. Stünzner D., Hubálek Z., Halouzka J., Postic D., Pierer K., Marth E. 1998. Prevalence of Borrelia burgdorferi s.l. in Ixodes ricinus ticks from Styria (Austria) and species identification by PCRRFLP analysis. Zentralblatt für Bakteriologie, 288, 471–478.PubMedGoogle Scholar
  41. Thompson J.D, Higgins D.G., Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.PubMedCrossRefGoogle Scholar
  42. Wang G., van Dam A.P., Le Fleche A., Postic D., Peter O., Baranton G., De Boer R., Spanjaard L., Dankert J. 1997. Genetic and phenotypic analysis of Borrelia valaisiana sp. nov. (Borrelia genomic groups VS116 and M19). International Journal of Systematic Bacteriology, 47, 926–932.PubMedCrossRefGoogle Scholar
  43. Zuevskiy A.P. 1976. Role of gamasids in the epizootiology of tularemia. Parazitologiya, 10, 531–535 (In Russian).Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alena Žákovská
    • 1
  • Eva Janouškovcová
    • 1
  • Kateřina Pejchalová
    • 1
  • Jiří Halouzka
    • 2
  • Miloš Dendis
    • 3
  1. 1.Department of Animal Physiology and Immunology, Institute of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Medical ZoologyInstitute of Vertebrate Biology AV CR BrnoValticeCzech Republic
  3. 3.Genex CZ, Company Ltd.BrnoCzech Republic

Personalised recommendations