Acta Parasitologica

, Volume 53, Issue 2, pp 197–204 | Cite as

Oligopeptidase B-2 from Leishmania amazonensis with an unusual C-terminal extension

  • Herbert L. de Matos Guedes
  • Rafael S. N. de Carvalho
  • Daniel C. de Oliveira Gomes
  • Bartira Rossi-Bergmann
  • Salvatore G. De-Simone
Article

Abstract

The oligopeptidase B serine protease is an important virulence factor and therapeutic target in Trypanosoma infections. Recently, the Leishmania major Genome Project identified a new oligopeptidase B that was denominated oligopeptidase B-like, herein named oligopeptidase B-2. In this study, a complete open reading frame of oligopeptidase B-2 from Leishmania amazonensis (PH8 strain) was amplified by PCR using primers designed for the oligopeptidase B-2 gene of L. major. The 2,715 bp fragment coded for a protein of 905 amino acids with a predicted molecular mass of 103,918.9 Da and theoretical pI of 5.82. The encoded protein displayed ∼96% identity with L. major and ∼75% identity with Trypanosoma cruzi and T. brucei oligopeptidases B-2, and ∼21% identity with Escherichia coli and L. amazonensis classical oligopeptidase B. An unusual C-terminal extension was found in relation to the classical trypanosomatid oligopeptidase B. By sequence alignment, we determined a catalytic triad (Ser 629, Asp 717 and His 758), S1 subsite (Glu 674 and Glu 676) and suggest a difference in the S2 subsite of L. amazonensis oligopeptidase B-2. We also found that the oligopeptidase B-2 gene is expressed in all cycle stages of L. amazonensis. A phylogenetic analysis indicated that oligopeptidase B-2 is a new member of oligopeptidase B.

Keywords

Leishmania amazonensis oligopeptidase B C-terminal extension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSIBLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.PubMedCrossRefGoogle Scholar
  2. Alves C.R., Benevolo-De-Andrade T.C., Alves J.L., Pirmez C. 2004. Th1 and Th2 immunological profile induced by cysteine proteinase in murine leishmaniasis. Parasite Immunology, 26, 127–135. DOI: 10.1111/j.0141-9838.2004.00691.x.PubMedCrossRefGoogle Scholar
  3. Alves C.R., Corte-Real S., Bourguignon S.C., Chaves C.S., Saraiva E.M. 2005. Leishmania amazonensis: Early proteinase activities during promastigote-amastigote differentiation in vitro. Experimental Parasitology, 109, 38–48. DOI: 10.1016/j.exppara.2004.10.005.PubMedCrossRefGoogle Scholar
  4. Azeredo-Coutinho R.B., Conceicao-Silva F., Schubach A., Cupolillo E., Quintella L.P., Madeira M.F., Pacheco R.S., Valete-Rosalino C.M., Mendonca S.C. 2007. First report of diffuse cutaneous leishmaniasis and Leishmania amazonensis infection in Rio de Janeiro State, Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101, 735–737. DOI: 10.1016/j.trstmh.2007.01.005.PubMedCrossRefGoogle Scholar
  5. Barral A., Pedral-Sampaio D., Grimaldi G. Jr., Momen H., McMahon-Pratt D., Ribeiro de Jesus A., Almeida R., Badaro R., Barral-Netto M., Carvalho E.M. 1991. Leishmaniasis in Bahia, Brazil: Evidence that Leishmania amazonensis produces a wide spectrum of clinical disease. American Journal of Tropical Medicine and Hygiene, 44, 536–546.PubMedGoogle Scholar
  6. Becker M.M., Harrop S.A., Dalton J.P., Kalinna B.H., McManus D.P., Brindley P.J. 1995. Cloning and characterization of the Schistosoma japonicum aspartic proteinase involved in hemoglobin degradation. Journal of Biological Chemistry, 270, 24496–24501.PubMedCrossRefGoogle Scholar
  7. Burleigh B.A., Woolsey A.M. 2002. Cell signalling and Trypanosoma cruzi invasion. Cellular Microbiology, 4, 701–711. DOI: 10.1046/j.1462-5822.2002.00226.x.PubMedCrossRefGoogle Scholar
  8. Cazzulo J.J. 2002. Proteinases of Trypanosoma cruzi: Potential targets for the chemotherapy of Chagas disease. Current Topics in Medicinal Chemistry, 2, 1261–1271. DOI: 10.2174/1568 026023392995.PubMedCrossRefGoogle Scholar
  9. Chappuis F., Sundar S., Hailu A., Ghalib H., Rijal S., Peeling R.W., Alvar J., Boelaert M. 2007. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nature Reviews Microbiology, 5, 873–882. DOI: 10.1038/ nrmicro1748.PubMedCrossRefGoogle Scholar
  10. Dávila A.M.R. 2002. Tripanosomose animal na América do Sul: Epizootiologia, Evolução e Tecnologias da Informação. Tese de doutorado. Fiocruz, RJ.Google Scholar
  11. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. 2005. Protein Identification and Analysis Tools on the ExPASy Server. In: (Ed. J.M. Walker) The Proteomics Protocols Handbook. Humana Press, 571–607.Google Scholar
  12. Gerczei T., Keseru G.M., Naray-Szabo G. 2000. Construction of a 3D model of oligopeptidase B, a potential processing enzyme in prokaryotes. Journal of Molecular Graphics and Modelling, 18, 7–17. DOI: 10.1016/S1093-3263(99)00042-X.PubMedCrossRefGoogle Scholar
  13. Guedes H.L.M., Carneiro M.P.D., Gomes D.C.O., Rossi-Bergmann B., De-Simone S.G. 2007. Oligopeptidase B from L. amazonensis: Molecular cloning, gene expression analysis and molecular model. Parasitology Research, 101, 865–875. DOI: 10.1007/s00436-007-0630-8.CrossRefGoogle Scholar
  14. Huang X., Miller W. 1991. A time-efficient, linear-space local similarity algorithm. Advances in Applied Mathematics, 12, 337–357. DOI: 10.1016/0196-8858(91)90017-D.CrossRefGoogle Scholar
  15. Ivens A.C., Peacock C.S., Worthey E.A., Murphy L., Aggarwal G., Berriman M., et al. 2005. The genome of the kinetoplastid parasite, Leishmania major. Science, 309, 436–442. DOI: 10.1126/science.1112680.PubMedCrossRefGoogle Scholar
  16. Kumar S., Tamura K., Nei M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 5, 150–163. DOI: 10.1093/bib/5.2.150.PubMedCrossRefGoogle Scholar
  17. Mishra J., Saxena A., Singh S. 2007. Chemotherapy of leishmaniasis: past, present and future. Current Medicinal Chemistry, 14, 1153–1169. DOI: 10.2174/092986707780362862.PubMedCrossRefGoogle Scholar
  18. Morty R.E., Fulop V., Andrews N.W. 2002. Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium. Journal of Bacteriology, 184, 3329–3337. DOI: 10.1128/JB.184.12.3329-3337.2002.PubMedCrossRefGoogle Scholar
  19. Morty R.E., Lonsdale-Eccles J.D., Morehead J., Caler E.V., Mentele R., Auerswald E.A., Coetzer T.H., Andrews N.W., Burleigh B.A. 1999. Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidase. Journal of Biological Chemistry, 274, 26149–26156.PubMedCrossRefGoogle Scholar
  20. Morty R.E., Pelle R., Vadasz I., Uzcanga G.L., Seeger W., Bubis J. 2005. Oligopeptidase B from Trypanosoma evansi. A parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts. Journal of Biological Chemistry, 280, 10925–10937. DOI: 10.1074/jbc.M410066200.PubMedCrossRefGoogle Scholar
  21. Morty R.E., Troeberg L., Pike R.N., Jones R., Nickel P., Lonsdale-Eccles J.D., Coetzer T.H.T. 1998. Trypanosome oligopeptidase as a target for the trypanocidal agents pentamidine, diminazene and suramin. FEBS Letters, 433, 251–256.PubMedCrossRefGoogle Scholar
  22. Mottram J.C., North M.J., Barry J.D., Coombs G.H. 1989. Acysteine proteinase cDNA from Trypanosoma brucei predicts an enzyme with an unusual C-terminal extension. FEBS Letters, 258, 211–215.PubMedCrossRefGoogle Scholar
  23. Notredame C., Higgins D.G., Heringa J. 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302, 205–217.PubMedCrossRefGoogle Scholar
  24. Polgar L. 2002. The prolyl oligopeptidase family. Cellular and Molecular Life Sciences, 59, 349–362. DOI: 10.1007/s00018-002-8427-5.PubMedCrossRefGoogle Scholar
  25. Sadij M., McKerrow J.H. 2002. Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology, 120, 1–21. DOI: 10.1016/S0166-6851(01)00438-8.CrossRefGoogle Scholar
  26. Sambrook J., Russell D.W. 2001. Molecular cloning: A laboratory manual. Third edition. CSH Press, 1–33.Google Scholar
  27. Shaw J. 2007. The leishmaniases — survival and expansion in a changing world. A mini-review. Memórias do Instituto Oswaldo Cruz, 102, 541–547.PubMedCrossRefGoogle Scholar
  28. Spath G.F., Beverley S.M. 2001. A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Experimental Parasitology, 99, 97–103. DOI: 10.1006/expr.2001.4656.PubMedCrossRefGoogle Scholar
  29. Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. DOI: 10.1093/nar/22.22.4673.PubMedCrossRefGoogle Scholar
  30. Tolezano J.E., Uliana S.R.B., Taniguchi H.H., Araujo M.F.L., Barbosa J.A.R., Barbosa J.E.R., Floeter-Winter L.M., Shaw J.J. 2007. The first records of Leishmania (Leishmania) amazonensis in dogs (Canis familiaris) diagnosed clinically as having canine visceral leishmaniasis from Araçatuba County, Sao Paulo State, Brazil. Veterinary Parasitology, 149, 280–284. DOI: 10.1016/j.vetpar.2007.07.008.PubMedCrossRefGoogle Scholar
  31. Vermelho A.B., De-Simone S.G., d’Avila-Levy C.M., do Santos A.L.S., de Melo A.C.N., Silva F.P.Jr., Bon E.P.S., Branquinha M.H. 2007. Trypanosomatidae peptidases: A target for drugs development. Current Enzyme Inhibition, 3, 319–348.CrossRefGoogle Scholar
  32. Williams R.A., Kelly S.M., Mottram J.C., Coombs G.H. 2003. 3-Mercaptopyruvate sulfurtransferase of Leishmania contains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism. Journal of Biological Chemistry, 278, 1480–1486. DOI: 10.1074/jbc.M209395200.PubMedCrossRefGoogle Scholar
  33. Wong J.Y, Harrop S.A., Day S.R., Brindley P.J. 1997. Schistosomes express two forms of cathepsin D. Biochimica et Biophysica Acta, 1338, 156–160.PubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Herbert L. de Matos Guedes
    • 1
    • 2
  • Rafael S. N. de Carvalho
    • 1
  • Daniel C. de Oliveira Gomes
    • 2
  • Bartira Rossi-Bergmann
    • 2
  • Salvatore G. De-Simone
    • 1
    • 3
  1. 1.Laboratório de Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia MolecularFundação Oswaldo CruzRio de JaneiroBrazil
  2. 2.Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Departamento de Biologia Celular e Molecular, Instituto de BiologiaUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations