Acta Parasitologica

, 53:193 | Cite as

Experimental hymenolepiasis of rats: preliminary data on histopathological changes of visceral organs

  • Sergey O. Movsesyan
  • Karine A. Jivanyan
  • Flora A. Chubaryan
  • Andrzej Malczewski
  • Nadezhda B. Terenina
  • Rosa Petrossyan
  • Karine S. Ter-Oganyan
Article

Abstract

Pathomorphological changes of intestine, liver, spleen and adrenals of rats experimentally infected with Hymenolepis diminuta are described 24 days post infection. Major structural alterations in intestinal wall include lesions of the mucosa, fusions of villi, damage of the epithelial layer and its replacement by flattened cells with pycnotic nuclei. In addition, tunica muscularis and tunica submucosa become thicker and there are numerous lymphocytes among enterocytes. At moderate infections, the changes in the spleen indicate activation of the lymphopoiesis and enhanced protective functions while, in heavily infected rats, the B zone of the spleen showed signs of emaciation. Liver histology of infected rats showed dilatation of sinusoids and the presence of destructive alterations in the parenchyma, necrotic cells and cells with pycnotic nuclei; in heavily infected animals, the necrotic cells were grouped in foci. In adrenal glands, alterations concern mostly zona fascicularis, which is interpreted as mobilization of cytoplasmic lipid inclusions in order to increase the intensity of the steroid hormone synthesis. The degree and character of histopathological changes depended on the intensity of infection.

Keywords

Hymenolepis diminuta experimental hymenolepiasis histopathology rats 

References

  1. Arakcheeva C.G. 1969. Histochemical studies of nuclei acids, carbohydrates and fatty substances in organs of white mice infected with dwarfish tapeworm. Materials of Scientific Conference on Problems of Medical Parasitology, Tashkent. Publishing House ‘Medicine’, Uzbek SSR, 81–83 (In Russian).Google Scholar
  2. Arme C., Bridges J.F., Hoole D. 1983. Pathology of cestode infections in the vertebrate host. In: (Eds. C. Arme and P.W. Pappas) Biology of the Eucestoda. Vol.2. Academic Press, London, 449–538.Google Scholar
  3. Claveria F.G., Causapin J., de Guzman M.A., Saliba C. 2005. Parasite biodiversity in Rattus spp. caught in wet markets. Southeastern Asian Journal of Tropical Medicine and Public Health, 36,Suppl. 4, 146–148.Google Scholar
  4. Gabriele F., Ecca A.R., Wakelin D., Palmas C. 1986. Blast cell activity in mice infected with Hymenolepis nana, H. diminuta and Trichinella spiralis; in vivo uptake of 125UdR in lymphoid tissues and gut. Helminthologia, 60, 313–321.CrossRefGoogle Scholar
  5. Hunter M.M., Wang A., McKay D.M. 2007. Helminth infection enhances disease in a murine TH2 model of colitis. Gastroenterology, 132, 1320–1330. DOI: 10.1053/j.gastro.2007.01.038.PubMedCrossRefGoogle Scholar
  6. Isaak D.D. 1983. In vitro tapeworm extract-induced proliferative responses of gut-associated lymphoid cells from Hymenolepis diminuta infected mice. Journal of Helminthology, 57, 43–50.PubMedGoogle Scholar
  7. Kondrin O.E., Nikiforova T.A. 2003. Application of biologically active substances for correction of disbiotical and peroxydant processes at hymenolepiasis patients. Materials of the International Medical Conference, see: www.vitadoctor.com.ua.
  8. Mangoud A.M., Eissa M.H., Abdallan M.A., Hassan M.M., Sabry A.H., Fikry A.A., Morsy T.A. 1991. Pathological and immunopathological changes in albino mice experimentally infected with Hymenolepis nana. Journal of the Egyptian Society of Parasitology, 21, 43–51.PubMedGoogle Scholar
  9. Palmas C., Bortoletti G., Conchedda M., Gabriele F. 1986. Immunological memory and lymphoblast-migration in mice infected with Hymenolepis nana. Zeitschrift für Parasitenkunde, 72, 397–403.CrossRefPubMedGoogle Scholar
  10. Palmas C., Wakelin D., Gabriele F. 1984. Transfer of immunity against Hymenolepis nana in mice with lymphoid cells or serum from infected donors. Parasitology, 89, 287–293.PubMedGoogle Scholar
  11. Raether W.H., Hänel H. 2003. Epidemiology, clinical manifestation and diagnosis of zoonotic cestode infections: An update. Parasitology Research, 91, 412–438. DOI: 10.1007/s00436-003-0903-9.PubMedCrossRefGoogle Scholar
  12. Rath E.A., Walkey M. 1987. Fatty acid and cholesterol synthesis in mice infected with the tapeworm Hymenolepis microsoma. Parasitology, 95, 79–92.PubMedGoogle Scholar
  13. Shinoda M., Asano K. 1989. The influence of Hymenolepis nana infection on antibody responses to sheep red blood cells in mice. Kitasato Archives of Experimental Medicine, 62, 163–169.PubMedGoogle Scholar
  14. Wang A., McKay D.M. 2005. Immune modulation by a high molecular weight fraction from the rat tapeworm Hymenolepis diminuta. Parasitology, 130, 575–585. DOI: 10.1017/S0031182004006985.PubMedCrossRefGoogle Scholar
  15. Zubitskaya M.A. 1974. Studies on details of Hymenolepis nana (Siebold, 1852) morphology and biology and Tribolium confusum beetles. PhD Dissertation, University of Frunze (In Russian).Google Scholar
  16. Zubitskaya M.A., Arakcheeva C.G., Lerner P.M. 1972. Some problems of experimental hymenolepiasis. Medical Journal of Uzbekistan, 4, 12–15 (In Russian).Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sergey O. Movsesyan
    • 1
  • Karine A. Jivanyan
    • 2
  • Flora A. Chubaryan
    • 3
  • Andrzej Malczewski
    • 4
  • Nadezhda B. Terenina
    • 1
  • Rosa Petrossyan
    • 2
  • Karine S. Ter-Oganyan
    • 2
  1. 1.Institute of ParasitologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of ZoologyYerevan State UniversityYerevanArmenia
  3. 3.Institute of ZoologyNational Academy of SciencesYerevanArmenia
  4. 4.Institute of ParasitologyPolish Academy of SciencesWarsawPoland

Personalised recommendations