Acta Parasitologica

, 53:165 | Cite as

Effect of host weight on the distribution of Argulus foliaceus (L.) (Crustacea, Branchiura) within a fish community

  • Peter D. Walker
  • Jack E. Harris
  • Gerard van der Velde
  • Sjoerd E. Wendelaar Bonga
Article

Abstract

Spatial heterogeneity is a feature common to many ecosystems. Aquatic organisms typically exhibit this heterogeneous distribution but to date little is known about the distribution of many common parasite species within water bodies. In this study the distribution of Argulus foliaceus (L.), an ectoparasitic crustacean, on different sized hosts within a mixed species fish community was determined. Different fish species exhibited differences in their louse burdens (prevalence and intensity). The highest prevalence of A. foliaceus was observed on fish species dominated by larger individuals (i.e. Cyprinus carpio, Abramis brama and Tinca tinca). C. carpio and A. brama also exhibited the highest mean louse intensities. Infested fish were generally heavier than uninfested conspecifics. Differences in the weight of uninfested and infested fish were significant (P<0.05) for the whole fish community samples and the Scardinius erythrophthalmus, A. brama and C. carpio samples. There was also a general pattern of increasing infestation intensity with an increase in host body weight, with significant correlations for the whole fish community for S. erythrophthalmus, A. brama and C. carpio samples. In addition there were significant differences in parasite prevalence and intensity between different host weight groups and larger (heavier) fish appeared to be more prone to infestation by A. foliaceus.

Keywords

Argulus weight host choice ectoparasite fish 

References

  1. Bandilla M., Hakalahti T., Hudson P.J., Valtonen E.T. 2005. Aggregation of Argulus coregoni (Crustacea: Branchiura) on rainbow trout (Onchorhynchus mykiss): a consequence of host susceptibility or exposure? Parasitology, 130, 169–176. DOI: 10.1007/s00265-007-0523-y.CrossRefPubMedGoogle Scholar
  2. Bone Q., Marshall N.B., Baxter J.H.S. 1995. Biology of fishes. 2nd ed. Chapman & Hall, London, 324 pp.Google Scholar
  3. Cochran P.A. 1985. Size selective attack by parasitic lampreys: consideration of alternative null hypotheses. Oecologia, 67, 137–141.CrossRefGoogle Scholar
  4. Dogiel V.A., Petrushevski G.K., Yu I. 1958. Parasitology of fishes. Leningrad University Press, Leningrad (translated by Z. Kabata; Oliver & Boyd, London), 384 pp.Google Scholar
  5. Grutter A.S. 1994. Spatial and temporal variations of the ectoparasites of seven reef fish species from Lizard Island and Heron Island, Australia. Marine Ecology Progress Series, 115, 21–30.CrossRefGoogle Scholar
  6. Kearn G.C. 2004. Leeches, lice and lampreys: A natural history of skin and gill parasites of fishes. Springer, Dordrecht, The Netherlands, 432 pp.Google Scholar
  7. Kollatsch D. 1959. Untersuchungen über die Biologie und Ökologie der Karpfenläuse (Argulus foliaceus L.). Zoologische Beiträge, 5, 1–36.Google Scholar
  8. Kuris A.M., Blaustein A.R., Alio J.J. 1980. Hosts as islands. American Naturalist, 116, 570–586.CrossRefGoogle Scholar
  9. LaMarre E., Cochran P.A. 1992. Lack of host species selection by the exotic parasitic crustacean, Argulus japonicus. Journal of Freshwater Ecology, 7, 77–80.Google Scholar
  10. MacArthur R.H., Wilson E.O. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, N.J., 224 pp.Google Scholar
  11. Mikheev V.N., Mikheev A.V., Pasternak A.F., Valtonen E.T. 2000. Light-mediated host searching strategies in a fish ectoparasite, Argulus foliaceus L. (Crustacea: Branchiura). Parasitology, 120, 409–416. DOI:10.1017/S0031182099005569.CrossRefPubMedGoogle Scholar
  12. Mikheev V.N., Valtonen E.T., Rintamäki-Kinnunen P. 1998. Host searching in Argulus foliaceus L. (Crustacea: Branchiura): the role of vision and selectivity. Parasitology, 116, 425–430. DOI:10.1017/S0031182098002455.CrossRefPubMedGoogle Scholar
  13. Mustafa A., MacKinnon B.M., Piasecki W. 2005. Interspecific differences between Atlantic salmon and Arctic charr in susceptibility to infection with larval and adult Caligus elongatus: effect of skin mucus protein profiles and epidermal histological differences. Acta Ichthyologica et Piscatoria, 35, 7–13.Google Scholar
  14. O’shea B., Mordue-Luntz A.J., Fryer R.J., Pert C.C., Bricknell I.R. 2006. Determination of the surface area of a fish. Journal of Fish Diseases, 29, 437–440. DOI: 10.1111/j.1365-2761.2006.00728.x.CrossRefPubMedGoogle Scholar
  15. Poulin R. 1993. The disparity between observed and uniform distributions: A new look at parasite aggregation. International Journal for Parasitology, 23, 937–944. DOI: 10.1016/0020-7519(93)90060-C.CrossRefPubMedGoogle Scholar
  16. Poulin R. 1999a. Parasitism and shoal size in juvenile sticklebacks: conflicting selection pressures from different ectoparasites? Ethology, 105, 959–968. DOI: 10.1046/j.1439-0310.1999.00491.x.CrossRefGoogle Scholar
  17. Poulin R. 1999b. Body size vs abundance among parasite species: positive relationships? Ecography, 22, 246–250. DOI: 10.1111/j.1600-0587.1999.tb00499.x.CrossRefGoogle Scholar
  18. Poulin R. 2000. Variation in the intraspecific relationship between fish length and intensity of parasitic infection: biological and statistical causes. Journal of Fish Biology, 56, 123–137. DOI:10.1111/j.1095-8649.2000.tb02090.x.CrossRefGoogle Scholar
  19. Poulin R., Curtis M.A., Rau M.E. 1991. Size, behaviour, and acquisition of ectoparasitic copepods by brook trout, Salvelinus fontinalis. Oikos, 61, 169–174.CrossRefGoogle Scholar
  20. Poulin R., FitzGerald G.J. 1987. The potential of parasitism in the structuring of a salt marsh stickleback community. Canadian Journal of Zoology, 65, 2793–2798.CrossRefGoogle Scholar
  21. Poulin R., FitzGerald G.J. 1989. Shoaling as an anti-ectoparasite mechanism in juvenile sticklebacks (Gasterosteus spp.). Behavioural Ecology and Sociobiology, 24, 251–255. DOI: 10.1007/BF00295205.CrossRefGoogle Scholar
  22. Reiczigel J., Rózsa L. 2005. Quantitative Parasitology 3.0. Budapest. Distributed by the authors.Google Scholar
  23. Rózsa L. 1997. Wing-feather mite (Acari: Protophyllodidae) abundance correlates with body mass of passerine hosts: a comparative study. Canadian Journal of Zoology, 75, 1535–1539.CrossRefGoogle Scholar
  24. Rózsa L., Reiczigel J., Majoros G. 2000. Quantifying parasites in samples of hosts. Journal of Parasitology, 86, 228–232. DOI:10.2307/3284760.CrossRefPubMedGoogle Scholar
  25. Todd C.D., Walker A.M., Hoyle E.J., Northcott S.J., Walker A.F., Ritchie M.G. 2000. Infestations of wild adult Atlantic salmon (Salmo salar L.) by the ectoparasitic copepod sea louse Lepeophtheirus salmonis Krryer: prevalence, intensity and the spatial distribution of males and females on the host fish. Hydrobiologia, 429, 181–196.CrossRefGoogle Scholar
  26. Tucker C.S., Sommerville C., Wootten R. 2002. Does size really matter? Effects of fish surface area on the settlement and initial survival of Lepeophtheirus salmonis, an ectoparasite of Atlantic salmon Salmo salar. Diseases of Aquatic Organisms, 49, 145–152. DOI: 10.3354/dao049145.CrossRefPubMedGoogle Scholar
  27. Walker P.D., Flik G., Wendelaar Bonga S.E. 2004. The biology of parasites from the genus Argulus and a review of the interactions with its host. Symposia of the Society for Experimental Biology, 55, 107–129.PubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Peter D. Walker
    • 1
    • 2
  • Jack E. Harris
    • 2
  • Gerard van der Velde
    • 1
    • 3
  • Sjoerd E. Wendelaar Bonga
    • 1
  1. 1.Department of Animal Ecology & Ecophysiology, Institute for Water and Wetland Research, Faculty of ScienceRadboud University NijmegenNijmegenThe Netherlands
  2. 2.School of Biological SciencesUniversity of PlymouthPlymouthUK
  3. 3.National Museum of Natural History NaturalisLeidenThe Netherlands

Personalised recommendations