Advertisement

Cellular & Molecular Biology Letters

, Volume 16, Issue 2, pp 236–257 | Cite as

Stem cells from adipose tissue

  • Malgorzata Witkowska-ZimnyEmail author
  • Katarzyna Walenko
Review

Abstract

This is a review of the growing scientific interest in the developmental plasticity and therapeutic potential of stromal cells isolated from adipose tissue. Adipose-derived stem/stromal cells (ASCs) are multipotent somatic stem cells that are abundant in fat tissue. It has been shown that ASCs can differentiate into several lineages, including adipose cells, chondrocytes, osteoblasts, neuronal cells, endothelial cells, and cardiomyocytes. At the same time, adipose tissue can be harvested by a minimally invasive procedure, which makes it a promising source of adult stem cells. Therefore, it is believed that ASCs may become an alternative to the currently available adult stem cells (e.g. bone marrow stromal cells) for potential use in regenerative medicine. In this review, we present the basic information about the field of adipose-derived stem cells and their potential use in various applications.

Key words

Adult stem cells Adipose-derived stem cells/stromal cells Adipose tissue Regenerative medicine 

Abbreviations used

ASCs

adipose-derived stem/stromal cells

BAT

brown adipose tissue

BM-MSCs

bone marrow mesenchymal stem cells

BMP

bone morphogenetic protein

ES

embryonic stem

HGF

hepatocyte growth factor

HSCs

hematopoietic stem cells

IGF

insulin growth factor

Il

interleukin

M-CSF

macrophage colony stimulating factor

MSCs

mesenchymal stem cells

Runx2

runt-related transcription factor 2

SVF

stromal-vascular cell fraction

TGF-β1

transforming growth factor-β1

TNFα

tumor necrosis factor α

WAT

white adipose tissue

VEGF

vascular endothelial growth factor

References

  1. 1.
    Zuk, P.A. The adipose-derived stem cell: Looking back and looking ahead. Mol. Biol. Cell 21 (2010) 1783–1787.PubMedGoogle Scholar
  2. 2.
    Dazzi, F., Ramasamy, R., Glennie, S., Jones, S.P. and Roberts, I. The role of mesenchymal stem cells in haemopoiesis. Blood Rev. 20 (2006) 161–171.PubMedGoogle Scholar
  3. 3.
    Clarke, D.L., Johansson, C.B., Wilbertz, J., Veress, B., Nilsson, E., Karlstrom, H., Lendahl, U. and Frisen, J. Generalized potential of adult neural stem cells. Science 288 (2000) 1660–1663.PubMedGoogle Scholar
  4. 4.
    Ng, A.M., Saim, A.B., Tan, K.K., Tan, G.H., Mokhtar, S.A., Rose, I.M., Othman, F. and Idrus, R.B. Comparison of bioengineered human bone construct from four sources of osteogenic cells. J. Orthop. Sci. 10 (2005) 192–199.PubMedGoogle Scholar
  5. 5.
    Crisan, M., Yap, S., Casteilla, L., Chen, C., Corselli, M., Park, T.S. and Peault, B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3 (2008) 301–313.PubMedGoogle Scholar
  6. 6.
    Huang, G.T., Gronthos, S. and Shi, S. Mesenchymal stem cells derived from dental tissues vs. Those from other sources: Their biology and role in regenerative medicine. J. Dent. Res. 88 (2009) 792–806.PubMedGoogle Scholar
  7. 7.
    Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P. and Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7 (2001) 211–228.PubMedGoogle Scholar
  8. 8.
    Gesta, S., Tseng, Y.H. and Kahn, C.R. Developmental origin of fat: Tracking obesity to its source. Cell 131 (2007) 242–256.PubMedGoogle Scholar
  9. 9.
    Kershaw, E.E. and Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89 (2004) 2548–2556.PubMedGoogle Scholar
  10. 10.
    Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X. and Cui, Z. Adipose-derived stem cell: A better stem cell than bmsc. Cell Biochem. Funct. 26 (2008) 664–675.PubMedGoogle Scholar
  11. 11.
    Katz, A.J., Llull, R., Hedrick, M.H. and Futrell, J.W. Emerging approaches to the tissue engineering of fat. Clin. Plast Surg. 26 (1999) 587–603.PubMedGoogle Scholar
  12. 12.
    Schaffler, A. and Buchler, C. Concise review: Adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 25 (2007) 818–827.PubMedGoogle Scholar
  13. 13.
    Williams, S.K., McKenney, S. and Jarrell, B.E. Collagenase lot selection and purification for adipose tissue digestion. Cell Transplant. 4 (1995) 281–289.PubMedGoogle Scholar
  14. 14.
    Nakagami, H., Morishita, R., Maeda, K., Kikuchi, Y., Ogihara, T. and Kaneda, Y. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J. Atheroscler. Thromb. 13 (2006) 77–81.PubMedGoogle Scholar
  15. 15.
    Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. and Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8 (2006) 315–317.PubMedGoogle Scholar
  16. 16.
    Gronthos, S., Franklin, D.M., Leddy, H.A., Robey, P.G., Storms, R.W. and Gimble, J.M. Surface protein characterization of human adipose tissuederived stromal cells. J. Cell Physiol. 189 (2001) 54–63.PubMedGoogle Scholar
  17. 17.
    Dawn, B. and Bolli, R. Adult bone marrow-derived cells: Regenerative potential, plasticity, and tissue commitment. Basic Res. Cardiol. 100 (2005) 494–503.PubMedGoogle Scholar
  18. 18.
    De Ugarte, D.A., Alfonso, Z., Zuk, P.A., Elbarbary, A., Zhu, M., Ashjian, P., Benhaim, P., Hedrick, M.H. and Fraser, J.K. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol. Lett. 89 (2003) 267–270.PubMedGoogle Scholar
  19. 19.
    Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W. and Ho, A.D. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33 (2005) 1402–1416.PubMedGoogle Scholar
  20. 20.
    Kern, S., Eichler, H., Stoeve, J., Kluter, H. and Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24 (2006) 1294–1301.PubMedGoogle Scholar
  21. 21.
    Romanov, Y.A., Darevskaya, A.N., Merzlikina, N.V. and Buravkova, L.B. Mesenchymal stem cells from human bone marrow and adipose tissue: Isolation, characterization, and differentiation potentialities. Bull. Exp. Biol. Med. 140 (2005) 138–143.PubMedGoogle Scholar
  22. 22.
    Puissant, B., Barreau, C., Bourin, P., Clavel, C., Corre, J., Bousquet, C., Taureau, C., Cousin, B., Abbal, M., Laharrague, P., Penicaud, L., Casteilla, L. and Blancher, A. Immunomodulatory effect of human adipose tissuederived adult stem cells: Comparison with bone marrow mesenchymal stem cells. Br. J. Haematol. 129 (2005) 118–129.PubMedGoogle Scholar
  23. 23.
    Peroni, D., Scambi, I., Pasini, A., Lisi, V., Bifari, F., Krampera, M., Rigotti, G., Sbarbati, A. and Galie, M. Stem molecular signature of adipose-derived stromal cells. Exp. Cell Res. 314 (2008) 603–615.PubMedGoogle Scholar
  24. 24.
    Egusa, H., Iida, K., Kobayashi, M., Lin, T.Y., Zhu, M., Zuk, P.A., Wang, C.J., Thakor, D.K., Hedrick, M.H. and Nishimura, I. Downregulation of extracellular matrix-related gene clusters during osteogenic differentiation of human bone marrow- and adipose tissue-derived stromal cells. Tissue Eng. 13 (2007) 2589–2600.PubMedGoogle Scholar
  25. 25.
    Stolzing, A., Jones, E., McGonagle, D. and Scutt, A. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech. Ageing Dev. 129 (2008) 163–173.PubMedGoogle Scholar
  26. 26.
    Taha, M.F. and Hedayati, V. Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells. Tissue Cell 42 (2010) 211–216.PubMedGoogle Scholar
  27. 27.
    Froehlich, H., Gulati, R., Boilson, B., Witt, T., Harbuzariu, A., Kleppe, L., Dietz, A.B., Lerman, A. and Simari, R.D. Carotid repair using autologous adipose-derived endothelial cells. Stroke 40 (2009) 1886–1891.PubMedGoogle Scholar
  28. 28.
    Rodda, D.J., Chew, J.L., Lim, L.H., Loh, Y.H., Wang, B., Ng, H.H. and Robson, P. Transcriptional regulation of nanog by oct4 and sox2. J. Biol. Chem. 280 (2005) 24731–24737.PubMedGoogle Scholar
  29. 29.
    Liedtke, S., Enczmann, J., Waclawczyk, S., Wernet, P. and Kogler, G. Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell 1 (2007) 364–366.PubMedGoogle Scholar
  30. 30.
    Prunet-Marcassus, B., Cousin, B., Caton, D., Andre, M., Penicaud, L. and Casteilla, L. From heterogeneity to plasticity in adipose tissues: Site-specific differences. Exp. Cell Res. 312 (2006) 727–736.PubMedGoogle Scholar
  31. 31.
    Avram, A.S., Avram, M.M. and James, W.D. Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J. Am. Acad. Dermatol. 53 (2005) 671–683.PubMedGoogle Scholar
  32. 32.
    Fraser, J.K., Wulur, I., Alfonso, Z., Zhu, M. and Wheeler, E.S. Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy 9 (2007) 459–467.PubMedGoogle Scholar
  33. 33.
    Festy, F., Hoareau, L., Bes-Houtmann, S., Pequin, A.M., Gonthier, M.P., Munstun, A., Hoarau, J.J., Cesari, M. and Roche, R. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem. Cell Biol. 124 (2005) 113–121.PubMedGoogle Scholar
  34. 34.
    Kang, Y., Park, C., Kim, D., Seong, C.M., Kwon, K. and Choi, C. Unsorted human adipose tissue-derived stem cells promote angiogenesis and myogenesis in murine ischemic hindlimb model. Microvasc. Res. 80 (2010) 310–316.PubMedGoogle Scholar
  35. 35.
    Kajiyama, H., Hamazaki, T.S., Tokuhara, M., Masui, S., Okabayashi, K., Ohnuma, K., Yabe, S., Yasuda, K., Ishiura, S., Okochi, H. and Asashima, M. Pdx1-transfected adipose tissue-derived stem cells differentiate into insulinproducing cells in vivo and reduce hyperglycemia in diabetic mice. Int. J. Dev. Biol. 54 (2010) 699–705.PubMedGoogle Scholar
  36. 36.
    Levi, B., James, A.W., Nelson, E.R., Vistnes, D., Wu, B., Lee, M., Gupta, A. and Longaker, M.T. Human adipose derived stromal cells heal critical size mouse calvarial defects. PLoS One 5 (2010) e11177.PubMedGoogle Scholar
  37. 37.
    Kilroy, G.E., Foster, S.J., Wu, X., Ruiz, J., Sherwood, S., Heifetz, A., Ludlow, J.W. and Gimble, J.M. Cytokine profile of human Adipose-derived Stem Cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. Cell. Physiol. 212 (2007) 702–709.Google Scholar
  38. 38.
    Witkowska-Zimny, M., Wróbel, E. and Przybylski, J. The most importat trascriptional factors of osteoblastogeesis. Adv. Cell Biol. 2 (2010) 17–28.Google Scholar
  39. 39.
    Mauney, J.R., Nguyen, T., Gillen, K., Kirker-Head, C., Gimble, J.M. and Kaplan, D.L. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3d scaffolds. Biomaterials 28 (2007) 5280–5290.PubMedGoogle Scholar
  40. 40.
    Zhao, Y., Lin, H., Zhang, J., Chen, B., Sun, W., Wang, X., Zhao, W., Xiao, Z. and Dai, J. Crosslinked three-dimensional demineralized bone matrix for the adipose-derived stromal cell proliferation and differentiation. Tissue Eng. Part A 15 (2009) 13–21.PubMedGoogle Scholar
  41. 41.
    Hong, L., Colpan, A., Peptan, I.A., Daw, J., George, A. and Evans, C.A. 17-beta estradiol enhances osteogenic and adipogenic differentiation of human adipose-derived stromal cells. Tissue Eng. 13 (2007) 1197–1203.PubMedGoogle Scholar
  42. 42.
    Brayfield, C., Marra, K. and Rubin, J.P. Adipose stem cells for soft tissue regeneration. Handchir. Mikrochir. Plast. Chir. 42 (2010) 124–128.PubMedGoogle Scholar
  43. 43.
    Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P. and Hedrick, M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13 (2002) 4279–4295.PubMedGoogle Scholar
  44. 44.
    Lee, J.H., Rhie, J.W., Oh, D.Y. and Ahn, S.T. Osteogenic differentiation of human adipose tissue-derived stromal cells (hascs) in a porous threedimensional scaffold. Biochem. Biophys. Res. Commun. 370 (2008) 456–460.PubMedGoogle Scholar
  45. 45.
    Lee, S.J., Kang, S.W., Do, H.J., Han, I., Shin, D.A., Kim, J.H. and Lee, S.H. Enhancement of bone regeneration by gene delivery of bmp2/runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials 31 (2010) 5652–5659.PubMedGoogle Scholar
  46. 46.
    Jeon, O., Rhie, J.W., Kwon, I.K., Kim, J.H., Kim, B.S. and Lee, S.H. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically. Tissue Eng. Part A 14 (2008) 1285–1294.PubMedGoogle Scholar
  47. 47.
    Lin, Y., Wang, T., Wu, L., Jing, W., Chen, X., Li, Z., Liu, L., Tang, W., Zheng, X. and Tian, W. Ectopic and in situ bone formation of adipose tissue-derived stromal cells in biphasic calcium phosphate nanocomposite. J. Biomed. Mater Res. A 81 (2007) 900–910.PubMedGoogle Scholar
  48. 48.
    Li, X., Yao, J., Wu, L., Jing, W., Tang, W., Lin, Y., Tian, W. and Liu, L. Osteogenic induction of adipose-derived stromal cells: Not a requirement for bone formation in vivo. Artif. Organs 34 (2009) 46–54.PubMedGoogle Scholar
  49. 49.
    Gastaldi, G., Asti, A., Scaffino, M.F., Visai, L., Saino, E., Cometa, A.M. and Benazzo, F. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds. J. Biomed. Mater Res. 94A (2010) 790–799.Google Scholar
  50. 50.
    Cowan, C.M., Shi, Y.Y., Aalami, O.O., Chou, Y.F., Mari, C., Thomas, R., Quarto, N., Contag, C.H., Wu, B. and Longaker, M.T. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 22 (2004) 560–567.PubMedGoogle Scholar
  51. 51.
    Shen, F.H., Zeng, Q., Lv, Q., Choi, L., Balian, G., Li, X. and Laurencin, C.T. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Spine J. 6 (2006) 615–623.PubMedGoogle Scholar
  52. 52.
    Hennig, T., Lorenz, H., Thiel, A., Goetzke, K., Dickhut, A., Geiger, F. and Richter, W. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and bmp profile and is overcome by bmp-6. J. Cell Physiol. 211 (2007) 682–691.PubMedGoogle Scholar
  53. 53.
    Kim, H.J. and Im, G.I. Chondrogenic differentiation of adipose tissuederived mesenchymal stem cells: Greater doses of growth factor are necessary. J. Orthop. Res. 27 (2009) 612–619.PubMedGoogle Scholar
  54. 54.
    Kim, B.S., Kang, K.S. and Kang, S.K. Soluble factors from ascs effectively direct control of chondrogenic fate. Cell Prolif. 43 (2010) 249–261.PubMedGoogle Scholar
  55. 55.
    Awad, H.A., Halvorsen, Y.D., Gimble, J.M. and Guilak, F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 9 (2003) 1301–1312.PubMedGoogle Scholar
  56. 56.
    Mahmoudifar, N. and Doran, P.M. Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31 (2010) 3858–3867.PubMedGoogle Scholar
  57. 57.
    Betre, H., Ong, S.R., Guilak, F., Chilkoti, A., Fermor, B. and Setton, L.A. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 27 (2006) 91–99.PubMedGoogle Scholar
  58. 58.
    Jin, X., Sun, Y., Zhang, K., Wang, J., Shi, T., Ju, X. and Lou, S. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials 28 (2007) 2994–3003.PubMedGoogle Scholar
  59. 59.
    Brzoska, M., Geiger, H., Gauer, S. and Baer, P. Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem. Biophys. Res. Commun. 330 (2005) 142–150.PubMedGoogle Scholar
  60. 60.
    Rodriguez, L.V., Alfonso, Z., Zhang, R., Leung, J., Wu, B. and Ignarro, L.J. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc. Natl. Acad. Sci. USA 103 (2006) 12167–12172.PubMedGoogle Scholar
  61. 61.
    Rodriguez-Serrano, F., Alvarez, P., Caba, O., Picon, M., Marchal, J.A., Peran, M., Prados, J., Melguizo, C., Rama, A.R., Boulaiz, H. and Aranega, A. Promotion of human adipose-derived stem cell proliferation mediated by exogenous nucleosides. Cell Biol. Int. 34 (2010) 917–924.PubMedGoogle Scholar
  62. 62.
    Madonna, R. and De Caterina, R. In vitro neovasculogenic potential of resident adipose tissue precursors. Am. J. Physiol. Cell Physiol. 295 (2008) C1271–1280.PubMedGoogle Scholar
  63. 63.
    Heydarkhan-Hagvall, S., Schenke-Layland, K., Yang, J.Q., Heydarkhan, S., Xu, Y., Zuk, P.A., MacLellan, W.R. and Beygui, R.E. Human adipose stem cells: A potential cell source for cardiovascular tissue engineering. Cells Tissues Organs 187 (2008) 263–274.PubMedGoogle Scholar
  64. 64.
    Planat-Benard, V., Silvestre, J.S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., Clergue, M., Manneville, C., Saillan-Barreau, C., Duriez, M., Tedgui, A., Levy, B., Penicaud, L. and Casteilla, L. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation 109 (2004) 656–663.PubMedGoogle Scholar
  65. 65.
    Verseijden, F., Posthumus-van Sluijs, S.J., Pavljasevic, P., Hofer, S.O., van Osch, G.J. and Farrell, E. Adult human bone marrow- and adipose tissuederived stromal cells support the formation of prevascular-like structures from endothelial cells in vitro. Tissue Eng. Part A 16 (2010) 101–114.PubMedGoogle Scholar
  66. 66.
    Scherberich, A., Galli, R., Jaquiery, C., Farhadi, J. and Martin, I. Threedimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells 25 (2007) 1823–1829.PubMedGoogle Scholar
  67. 67.
    Nakagami, H., Maeda, K., Morishita, R., Iguchi, S., Nishikawa, T., Takami, Y., Kikuchi, Y., Saito, Y., Tamai, K., Ogihara, T. and Kaneda, Y. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler. Thromb. Vasc. Biol. 25 (2005) 2542–2547.PubMedGoogle Scholar
  68. 68.
    Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C.J., Bovenkerk, J.E., Pell, C.L., Johnstone, B.H., Considine, R.V. and March, K.L. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109 (2004) 1292–1298.PubMedGoogle Scholar
  69. 69.
    Muller, A.M., Mehrkens, A., Schafer, D.J., Jaquiery, C., Guven, S., Lehmicke, M., Martinetti, R., Farhadi, I., Jakob, M., Scherberich, A. and Martin, I. Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue. Eur. Cell Mater. 19 (2010) 127–135.PubMedGoogle Scholar
  70. 70.
    Nakada, A., Fukuda, S., Ichihara, S., Sato, T., Itoi, S., Inada, Y., Endo, K. and Nakamura, T. Regeneration of central nervous tissue using a collagen scaffold and adipose-derived stromal cells. Cells Tissues Organs 190 (2009) 326–335.PubMedGoogle Scholar
  71. 71.
    Erba, P., Terenghi, G. and Kingham, P.J. Neural differentiation and therapeutic potential of adipose tissue derived stem cells. Curr. Stem Cell Res. Ther. 5 (2009) 153–160.Google Scholar
  72. 72.
    Okura, H., Komoda, H., Fumimoto, Y., Lee, C.M., Nishida, T., Sawa, Y. and Matsuyama, A. Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters. J. Artif. Organs 12 (2009) 123–130.PubMedGoogle Scholar
  73. 73.
    Timper, K., Seboek, D., Eberhardt, M., Linscheid, P., Christ-Crain, M., Keller, U., Muller, B. and Zulewski, H. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 341 (2006) 1135–1140.PubMedGoogle Scholar
  74. 74.
    Long, J.L., Zuk, P., Berke, G.S. and Chhetri, D.K. Epithelial differentiation of adipose-derived stem cells for laryngeal tissue engineering. Laryngoscope 120 (2010) 125–131.PubMedGoogle Scholar
  75. 75.
    Jeong, J.H., Lee, J.H., Jin, E.S., Min, J.K., Jeon, S.R. and Choi, K.H. Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells. Acta Neurochir. (Wien) 152 (2010) 1771–1777.Google Scholar
  76. 76.
    Banas, A., Teratani, T., Yamamoto, Y., Tokuhara, M., Takeshita, F., Quinn, G., Okochi, H. and Ochiya, T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46 (2007) 219–228.PubMedGoogle Scholar
  77. 77.
    Aurich, H., Sgodda, M., Kaltwasser, P., Vetter, M., Weise, A., Liehr, T., Brulport, M., Hengstler, J.G., Dollinger, M.M., Fleig, W.E. and Christ, B. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58 (2009) 570–581.PubMedGoogle Scholar
  78. 78.
    Hong, S.J., Traktuev, D.O. and March, K.L. Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr. Opin. Organ Transplant. 15 (2010) 86–91.PubMedGoogle Scholar
  79. 79.
    Goudenege, S., Pisani, D.F., Wdziekonski, B., Di Santo, J.P., Bagnis, C., Dani, C. and Dechesne, C.A. Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of myod. Mol. Ther. 17 (2009) 1064–1072.PubMedGoogle Scholar
  80. 80.
    Kang, S.K., Putnam, L.A., Ylostalo, J., Popescu, I.R., Dufour, J., Belousov, A. and Bunnell, B.A. Neurogenesis of rhesus adipose stromal cells. J. Cell Sci. 117 (2004) 4289–4299.PubMedGoogle Scholar
  81. 81.
    Kingham, P.J., Kalbermatten, D.F., Mahay, D., Armstrong, S.J., Wiberg, M. and Terenghi, G. Adipose-derived stem cells differentiate into a schwann cell phenotype and promote neurite outgrowth in vitro. Exp. Neurol. 207 (2007) 267–274.PubMedGoogle Scholar
  82. 82.
    Safford, K.M., Safford, S.D., Gimble, J.M., Shetty, A.K. and Rice, H.E. Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp. Neurol. 187 (2004) 319–328.PubMedGoogle Scholar
  83. 83.
    Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W. and Daley, G.Q. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451 (2008) 141–146.PubMedGoogle Scholar
  84. 84.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 (2007) 861–872.PubMedGoogle Scholar
  85. 85.
    Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, II and Thomson, J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science 318 (2007) 1917–1920.PubMedGoogle Scholar
  86. 86.
    Sun, N., Panetta, N.J., Gupta, D.M., Wilson, K.D., Lee, A., Jia, F., Hu, S., Cherry, A.M., Robbins, R.C., Longaker, M.T. and Wu, J.C. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl. Acad. Sci. USA 106 (2009) 15720–15725.PubMedGoogle Scholar
  87. 87.
    Grisendi, G., Bussolari, R., Cafarelli, L., Petak, I., Rasini, V., Veronesi, E., De Santis, G., Spano, C., Tagliazzucchi, M., Barti-Juhasz, H., Scarabelli, L., Bambi, F., Frassoldati, A., Rossi, G., Casali, C., Morandi, U., Horwitz, E.M., Paolucci, P., Conte, P. and Dominici, M. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res. 70 (2010) 3718–3729.PubMedGoogle Scholar
  88. 88.
    Liu, H., Chu, Y. and Lou, G. Fiber-modified adenovirus can mediate human adipose tissue-derived mesenchymal stem cell-based anti-angiogenic gene therapy. Biotechnol. Lett. 32 (2010) 1181–1188.PubMedGoogle Scholar
  89. 89.
    Ghosh, S., Dean, A., Walter, M., Bao, Y., Hu, Y., Ruan, J. and Li, R. Cell density-dependent transcriptional activation of endocrine-related genes in human adipose tissue-derived stem cells. Exp. Cell Res. 316 (2010) 2087–2098.PubMedGoogle Scholar
  90. 90.
    Walter, M., Liang, S., Ghosh, S., Hornsbz, P.J., and Li, R. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 28 (2009) 2745–2755.PubMedGoogle Scholar
  91. 91.
    Awad, H.A., Wickham, M.Q., Leddy, H.A., Gimble, J.M. and Guilak, F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25 (2004) 3211–3222.PubMedGoogle Scholar
  92. 92.
    Cheng, N.C., Estes, B.T., Awad, H.A. and Guilak, F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng. Part A 15 (2009) 231–241.PubMedGoogle Scholar
  93. 93.
    Haimi, S., Suuriniemi, N., Haaparanta, A.M., Ella, V., Lindroos, B., Huhtala, H., Raty, S., Kuokkanen, H., Sandor, G.K., Kellomaki, M., Miettinen, S. and Suuronen, R. Growth and osteogenic differentiation of adipose stem cells on pla/bioactive glass and pla/beta-tcp scaffolds. Tissue Eng. Part A 15 (2009) 1473–1480.PubMedGoogle Scholar
  94. 94.
    Marino, G., Rosso, F., Cafiero, G., Tortora, C., Moraci, M., Barbarisi, M. and Barbarisi, A. Beta-tricalcium phosphate 3d scaffold promote alone osteogenic differentiation of human adipose stem cells: In vitro study. J. Mater. Sci. Mater. Med. 21 353–363.Google Scholar
  95. 95.
    McCullen, S.D., Zhu, Y., Bernacki, S.H., Narayan, R.J., Pourdeyhimi, B., Gorga, R.E. and Loboa, E.G. Electrospun composite poly(l-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomed. Mater. 4 (2009) 035002.PubMedGoogle Scholar
  96. 96.
    Park, I.S., Han, M., Rhie, J.W., Kim, S.H., Jung, Y. and Kim, I.H. The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism. Biomaterials 30 (2009) 6835–6843.PubMedGoogle Scholar
  97. 97.
    Muller, A.M., Davenport, M., Verrier, S., Droeser, R., Alini, M., Bocelli-Tyndall, C., Schaefer, D.J., Martin, I. and Scherberich, A. Platelet lysate as a serum substitute for 2d static and 3d perfusion culture of stromal vascular fraction cells from human adipose tissue. Tissue Eng. Part A 15 (2009) 869–875.PubMedGoogle Scholar
  98. 98.
    Hicok, K.C., Du Laney, T.V., Zhou, Y.S., Halvorsen, Y.D., Hitt, D.C., Cooper, L.F. and Gimble, J.M. Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 10 (2004) 371–380.PubMedGoogle Scholar
  99. 99.
    Lee, J.H. and Kemp, D.M. Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem. Biophys. Res. Commun. 341 (2006) 882–888.PubMedGoogle Scholar
  100. 100.
    Vieira, N.M., Brandalise, V., Zucconi, E., Jazedje, T., Secco, M., Nunes, V.A., Strauss, B.E., Vainzof, M. and Zatz, M. Human multipotent adiposederived stem cells restore dystrophin expression of duchenne skeletalmuscle cells in vitro. Biol. Cell 100 (2008) 231–241.PubMedGoogle Scholar
  101. 101.
    Mizuno, H., Zuk, P.A., Zhu, M., Lorenz, H.P., Benhaim, P. and Hedrick, M.H. Myogenic differentiation by human processed lipoaspirate cells. Plast. Reconstr. Surg. 109 (2002) 199–209.PubMedGoogle Scholar
  102. 102.
    Rodriguez, A.M., Pisani, D., Dechesne, C.A., Turc-Carel, C., Kurzenne, J.Y., Wdziekonski, B., Villageois, A., Bagnis, C., Breittmayer, J.P., Groux, H., Ailhaud, G. and Dani, C. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J. Exp. Med. 201 (2005) 1397–1405.PubMedGoogle Scholar
  103. 103.
    Lee, W.C., Sepulveda, J.L., Rubin, J.P. and Marra, K.G. Cardiomyogenic differentiation potential of human adipose precursor cells. Int. J. Cardiol. 133 (2009) 399–401.PubMedGoogle Scholar
  104. 104.
    Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez, A., Garcia-Verdugo, J.M., Penicaud, L. and Casteilla, L. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res. 94 (2004) 223–229.PubMedGoogle Scholar
  105. 105.
    Jumabay, M., Matsumoto, T., Yokoyama, S., Kano, K., Kusumi, Y., Masuko, T., Mitsumata, M., Saito, S., Hirayama, A., Mugishima, H. and Fukuda, N. Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. J. Mol. Cell. Cardiol. 47 (2009) 565–575.PubMedGoogle Scholar
  106. 106.
    Ashjian, P.H., Elbarbary, A.S., Edmonds, B., De Ugarte, D., Zhu, M., Zuk, P.A., Lorenz, H.P., Benhaim, P. and Hedrick, M.H, In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast. Reconstr. Surg. 111 (2003) 1922–1931.PubMedGoogle Scholar
  107. 107.
    Ryu, H.H., Lim, J.H., Byeon, Y.E., Park, J.R., Seo, M.S., Lee, Y.W., Kim, W.H., Kang, K.S. and Kweon, O.K. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J. Vet. Sci. 10 (2009) 273–284.PubMedGoogle Scholar
  108. 108.
    Li, K., Han, Q., Yan, X., Liao, L. and Zhao, R.C. Not a process of simple vicariousness, the differentiation of human adipose-derived mesenchymal stem cells to renal tubular epithelial cells plays an important role in acute kidney injury repairing. Stem Cells Dev. 19 (2010) 1267–1275.PubMedGoogle Scholar
  109. 109.
    Tobita, M., Uysal, A.C., Ogawa, R., Hyakusoku, H. and Mizuno, H. Periodontal tissue regeneration with adipose-derived stem cells. Tissue Eng. Part A 14 (2008) 945–953.PubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  1. 1.Department of Biophysics and Human PhysiologyMedical University of WarsawWarsawPoland

Personalised recommendations