Advertisement

Cellular & Molecular Biology Letters

, Volume 15, Issue 4, pp 651–664 | Cite as

Ribosomal DNA, tri- and bi-partite pericentromeres in the permanent translocation heterozygote Rhoeo spathacea

  • Hieronim GolczykEmail author
  • Robert Hasterok
  • Marek Szklarczyk
Research Article
  • 276 Downloads

Abstract

High- and low-stringency FISH and base-specific fluorescence were performed on the permanent translocation heterozygote Rhoeo spathacea (2n = 12). Our results indicate that 45S rDNA arrays, rDNA-related sequences and other GC-rich DNA fraction(s) are located within the pericentromeric regions of all twelve chromosomes, usually colocalizing with the chromomycin A3-positive bands. Homogenization of the pericentromeric regions appears to result from the concerted spread of GC-rich sequences, with differential amplification likely. We found new 5S rDNA patterns, which suggest a variability in the breakpoints and in the consequent chromosome reorganizations. It was found that the large 5S rDNA locus residing on each of the 8E and 9E arms consisted of two smaller loci. On each of the two chromosome arms 3b and 4b, in addition to the major subtelomeric 5S rDNA locus, a new minor locus was found interstitially about 40% along the arm length. The arrangement of cytotogenetic landmarks and chromosome arm measurements are discussed with regard to genome repatterning in Rhoeo.

Key words

Pericentromere Permanent translocation heterozygosity rDNA Rhoeo 

Abbreviations used

CMA3+

chromomycin A3 positive

FISH

fluorescence in situ hybridization

NORs

nucleolus organizer regions

PTH

permanent translocation heterozygosity

rDNA

ribosomal DNA

WATs

whole arm translocations

References

  1. 1.
    Cleland, R.E. Oenothera. Cytogenetics and evolution, Academic Press, London and New York, 1972.Google Scholar
  2. 2.
    Holsinger, K.E. and Ellstrand, N.C. The evolution and ecology of permanent translocation heterozygotes. Am. Nat. 124 (1984) 48–71.CrossRefGoogle Scholar
  3. 3.
    Golczyk, H., Hasterok, R. and Joachimiak, A.J. FISH-aimed karyotyping and characterization of Renner complexes in permanent heterozygote Rhoeo spathacea. Genome 48 (2005) 145–153.CrossRefPubMedGoogle Scholar
  4. 4.
    Golczyk, H., Musial, K., Rauwolf, U., Meurer, J., Herrmann, R.G. and Greiner, S. Meiotic events in Oenothera - a non-standard pattern of chromosome behaviour. Genome 51 (2008) 952–958.CrossRefPubMedGoogle Scholar
  5. 5.
    Rauwolf, U., Golczyk, H., Meurer, J., Herrmann, R.G. and Greiner, S. Molecular marker systems for Oenothera genetics. Genetics 180 (2008) 1289–1306.CrossRefPubMedGoogle Scholar
  6. 6.
    Levin, D.A. The role of chromosomal change in plant evolution, Oxford University Press, New York, 2002.Google Scholar
  7. 7.
    Sax, K. Chromosome ring formation in Rhoeo discolor. Cytologia 3 (1931) 36–53.Google Scholar
  8. 8.
    Lin, Y.J. and Paddock, E.F. Ring-position and frequency of adjacent distribution of meiotic chromosomes in Rhoeo spathacea. Am. J. Bot. 60 (1973) 685–690.CrossRefGoogle Scholar
  9. 9.
    Natarajan, A.T. and Natarajan, S. The heterochromatin of Rhoeo discolor. Hereditas 72 (1972) 323–330.CrossRefGoogle Scholar
  10. 10.
    Pettenati, M.J. Giemsa C-banding of Rhoeo (Commelinaceae). Genetica 74 (1987) 219–224.CrossRefGoogle Scholar
  11. 11.
    Golczyk, H. and Joachimiak, A. Karyotype structure and interphase chromatin organization in Rhoeo spathacea (Sw.) Stearn (Commelinaceae). Acta Biol. Cracov. Ser. Bot. 41 (1999) 143–150.Google Scholar
  12. 12.
    Carniel, K. Enständige nucleolen und zahl der nucleolenchromosomen bei Rhoeo discolor. Öster. Bot. Z. 107 (1960) 403–408.CrossRefGoogle Scholar
  13. 13.
    Golczyk, H. and Joachimiak, A. NORs in Rhoeo revisited. Caryologia 56 (2003) 31–35.Google Scholar
  14. 14.
    Golczyk, H., Joachimiak, A. and Hasterok, R. Pericentromeric GC-rich chromatin in Rhoeo. Evidence from soma and germ-line. Caryologia 61 (2008) 388–391.Google Scholar
  15. 15.
    Schweizer, D. and Ambros, P.F. Chromosome banding. Meth. Mol. Biol. 29 (1994) 97–111.Google Scholar
  16. 16.
    Unfried, I. and Gruendler, P. Nucleotide sequence of the 5.8S and 25S rRNA genes and the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Res. 18 (1990) 4011.CrossRefPubMedGoogle Scholar
  17. 17.
    Gerlach, W.L. and Dyer, T.A. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 11 (1980) 4851–4865.CrossRefGoogle Scholar
  18. 18.
    Jenkins, G. and Hasterok, R. BAC landing on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat. Protoc. 2 (2007) 88–98.CrossRefPubMedGoogle Scholar
  19. 19.
    UTHSCSA ImageTool v.3.0 (http://ddsdx.uthscsa.edu/dig/itdesc.html).
  20. 20.
    Gross, M.C., Feldberg, E., Cella, D.M., Schneider, M.C., Schneider, C.H., Porto, J.I.R. and Martins, C. Intriguing evidence of translocations in Discus fish (Symphysodon, Cichlidae) and a report of the largest meiotic chromosomal chain observed in vertebrates. Heredity 102 (2009) 435–441.CrossRefPubMedGoogle Scholar
  21. 21.
    Bennetzen, J.L. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42 (2000) 251–269.CrossRefPubMedGoogle Scholar
  22. 22.
    Schubert, I. Chromosome evolution. Curr. Opin. Plant Biol. 10 (2007) 109–115.CrossRefPubMedGoogle Scholar
  23. 23.
    Kenton, A., Davies, A. and Jones, K, Identification of Renner complexes and duplications in permanent hybrids of Gibasis pulchella (Commelinaceae). Chromosoma 95 (1987) 424–434.CrossRefGoogle Scholar
  24. 24.
    Mesquita, D.R., Porto, J.I.R. and Feldberg, E. Chromosomal variability in the wild ornamental species of Symphysodon (Perciformes: Cichlidae) from Amazon. Neotrop. Ichthyol. 6 (2008) 181–190.CrossRefGoogle Scholar
  25. 25.
    Hunt, D.R. Campelia, Rhoeo, Zebrina united with Tradescantia. Kew Bull. 41 (1986) 401–405.CrossRefGoogle Scholar
  26. 26.
    Darlington, C.D. Chromosome behaviour and structural hybridity in the Tradescantiae. II. Jour. Genet. 35 (1937) 259–280.CrossRefGoogle Scholar
  27. 27.
    Sax, K. Chromosome behaviour and nuclear development in Tradescantia. Genetics 22 (1937) 523–533.PubMedGoogle Scholar
  28. 28.
    Swanson, C.R. The distribution of inversions in Tradescantia. Genetics 25 (1940) 438–465.PubMedGoogle Scholar
  29. 29.
    Coleman, L.C. The relation of chromocentres to the differential segments in Rhoeo discolor Hance. Amer. J. Bot. 28 (1941) 742–748.CrossRefGoogle Scholar
  30. 30.
    Schubert, I. and Wobus, U. In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92 (1985) 143–148.CrossRefGoogle Scholar
  31. 31.
    Cheung, S.W., Sun, L. and Featherstone, T. Molecular cytogenetic evidence to characterize breakpoint regions in Robertsonian translocations. Cytogenet. Cell Genet. 54 (1990) 97–102.CrossRefPubMedGoogle Scholar
  32. 32.
    Hall, K.J. and Parker, J.S. Stable chromosome fission associated with rDNA mobility. Chromosome Res. 3 (1995) 417–422.CrossRefPubMedGoogle Scholar
  33. 33.
    Thomas, H.M., Harper, J.A. and Morgan, W.G. Gross chromosome rearrangements are occurring in an accession of the grass Lolium rigidum. Chromosome Res. 9 (2001) 585–590.CrossRefPubMedGoogle Scholar
  34. 34.
    Gernand, D., Golczyk, H., Rutten, T., Ilnicki, T., Houben, A. and Joachimiak, A.J. Tissue culture triggers chromosome alterations, amplification and transposition of repeat sequences in Allium fistulosum. Genome 50 (2007) 435–442.CrossRefPubMedGoogle Scholar
  35. 35.
    Butler, D.K. Ribosomal DNA is a site of chromosome breakage in aneuploid strains of Neurospora. Genetics 131 (1992) 581–592.PubMedGoogle Scholar
  36. 36.
    Tagashira, N. and Kondo, K. Chromosome phylogeny of Zamia and Ceratozamia by means of Robertsonian changes detected by fluorescence in situ hybridization (FISH) technique of rDNA. Plant Syst. Evol. 227 (2001) 145–155.CrossRefGoogle Scholar
  37. 37.
    Moscone, E.A., Samuel, R., Schwarzacher, T., Schweizer, D. and Pedrosa-Harand, A. Complex rearrangements are involved in Cephalanthera (Orchidaceae) chromosome evolution. Chromosome Res. 15 (2007) 931–943.CrossRefPubMedGoogle Scholar
  38. 38.
    Hirai, H., Yamamoto, M.T., Taylor, R.W. and Imai, H.T. Genomic dispersion of 28S rDNA during karyotype evolution in the ant genus Myrmecia (Formicidae). Chromosoma 105 (1996) 190–196.CrossRefPubMedGoogle Scholar
  39. 39.
    Bombarová, M., Marec, F., Nguyen, P. and Špakulová, M. Divergent location of ribosomal genes in chromosomes of fish thornyheaded worms, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). Genetica 131 (2007) 141–149.CrossRefPubMedGoogle Scholar
  40. 40.
    Chung, M.C., Lee, Y.I., Cheng, Y,Y,, Chou, Y.J. and Lu, C.F. Chromosomal polymorphism of ribosomal genes in the genus Oryza. Theor. Appl. Genet. 116 (2008) 745–753.CrossRefPubMedGoogle Scholar
  41. 41.
    Nguyen, P., Sahara, K., Yoshido, A. and Marec, F. Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 138 (2010) 343–354.CrossRefPubMedGoogle Scholar
  42. 42.
    Gross, M.C., Schneider, C.H., Valente, G.T., Porto, J.I.R., Martins, C. and Feldberg, E. Comparative cytogenetic analysis of the genus Symphysodon (Discus Fishes, Cichlidae): chromosomal characteristics of retrotransposons and minor ribosomal DNA. Cytogenet. Genome Res. 127 (2009) 43–53.CrossRefPubMedGoogle Scholar
  43. 43.
    Mieczkowski, P.A., Lemoine, F.J. and Petes, T.D. Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair 5 (2006) 1010–1020.CrossRefPubMedGoogle Scholar
  44. 44.
    Dubcovsky, J. and Dvořák, J. Ribosomal RNA multigene loci - nomads of the Triticeae genomes. Genetics 140 (1995) 1367–1377.PubMedGoogle Scholar
  45. 45.
    Cabrero, J. and Camacho, J.P.M. Location and expression of ribosomal RNA genes in grasshoppers: abundance of silent and cryptic loci. Chromosome Res. 16 (2008) 595–607.CrossRefPubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Hieronim Golczyk
    • 1
    Email author
  • Robert Hasterok
    • 2
  • Marek Szklarczyk
    • 3
  1. 1.Department of Plant Cytology and Embryology, Institute of BotanyJagiellonian UniversityKrakówPoland
  2. 2.Department of Plant Anatomy and CytologyUniversity of SilesiaKatowicePoland
  3. 3.Department of Genetics, Plant Breeding and Seed ScienceAgricultural University of KrakowKrakówPoland

Personalised recommendations