Acta Geophysica

, Volume 62, Issue 3, pp 620–641 | Cite as

Floods at the northern foothills of the Tatra Mountains — A Polish-Swiss research project

  • Zbigniew W. Kundzewicz
  • Markus Stoffel
  • Ryszard J. Kaczka
  • Bartłomiej Wyżga
  • Tadeusz Niedźwiedź
  • Iwona Pińskwar
  • Virginia Ruiz-Villanueva
  • Ewa Łupikasza
  • Barbara Czajka
  • Juan Antonio Ballesteros-Canovas
  • Łukasz Małarzewski
  • Adam Choryński
  • Karolina Janecka
  • Paweł Mikuś
Research Article

Abstract

The present paper introduces the topical area of the Polish-Swiss research project FLORIST (Flood risk on the northern foothills of the Tatra Mountains), informs on its objectives, and reports on initial results. The Tatra Mountains are the area of the highest precipitation in Poland and largely contribute to flood generation. The project is focused around four competence clusters: observation-based climatology, model-based climate change projections and impact assessment, dendrogeomorphology, and impact of large wood debris on fluvial processes. The knowledge generated in the FLORIST project is likely to have impact on understanding and interpretation of flood risk on the northern foothills of the Tatra Mountains, in the past, present, and future. It can help solving important practical problems related to flood risk reduction strategies and flood preparedness.

Key words

floods dendrogeomorphology wood debris transport climate impact Tatra Mountains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexakis, D.D., A. Agapiou, D.G. Hadjimitsis, and A. Retalis (2012), Optimizing statistical classification accuracy of satellite remotely sensed imagery for supporting fast flood hydrological analysis, Acta Geophys. 60,3, 959–984, DOI: 10.2478/s11600-012-0025-9.CrossRefGoogle Scholar
  2. Ballesteros Cánovas, J.A., M. Eguibar, J.M. Bodoque, A. Díez-Herrero, M. Stoffel, and I. Gutiérrez-Pérez (2011), Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic paleostage indicators, Hydrol. Process. 25,6, 970–979, DOI: 10.1002/hyp.7888.CrossRefGoogle Scholar
  3. Christensen, O.B., and J.H. Christensen (2004), Intensification of extreme European summer precipitation in a warmer climate, Global Planet. Change 44,1–4, 107–117, DOI: 10.1016/j.gloplacha.2004.06.013.CrossRefGoogle Scholar
  4. Diehl, T.H. (1997), Potential drift accumulation at bridges, Publication No. FHWARD-97-028, US Department of Transportation, Federal Highway Administration Research and Development, USA.Google Scholar
  5. Falarz, M. (2002), Long-term variability in reconstructed and observed snow cover over the last 100 winter seasons in Cracow and Zakopane (southern Poland), Clim. Res. 19,3, 247–256, DOI: 10.3354/cr019247.CrossRefGoogle Scholar
  6. Gąsiorowski, D. (2013), Analysis of floodplain inundation using 2D nonlinear diffusive wave equation solved with splitting technique, Acta Geophys. 61,3, 668–689, DOI: 10.2478/s11600-012-0087-8.CrossRefGoogle Scholar
  7. Gurnell, A.M., G.E. Petts, D.M. Hannah, B.P.G. Smith, P.J. Edwards, J. Kollmann, J.V. Ward, and K. Tockner (2000), Wood storage within the active zone of a large European gravel-bed river, Geomorphology 34,1–2, 55–72, DOI: 10.1016/S0169-555X(99)00131-2.CrossRefGoogle Scholar
  8. Hattermann, F.F., Z.W. Kundzewicz, S. Huang, T. Vetter, F.-W. Gerstengarbe, and P. Werner (2013), Climatological drivers of changes in flood hazard in Germany, Acta Geophys. 61,2, 463–477, DOI: 10.2478/s11600-012-0070-4.CrossRefGoogle Scholar
  9. Hess, M. (1974), Vertical climatic zones in the Tatra Mountains, Czas. Geogr. 45,1, 75–95 (in Polish).Google Scholar
  10. Jahn, A. (1979), On the Holocene and present-day morphogenetic processes in the Tatra Mountains, Stud. Geomorph. Carp.-Balcan. 13, 111–129.Google Scholar
  11. Johnson, S.L., F.J. Swanson, G.E. Grant, and S.M. Wondzell (2000), Riparian forest disturbances by a mountain flood — the influence of floated wood, Hydrol. Process. 14,16–17, 3031–3050, DOI: 10.1002/1099-1085(200011/12) 14:16/17〈3031::AID-HYP133〉3.0.CO;2-6.CrossRefGoogle Scholar
  12. Kaczka, R.J. (2005), The role of coarse woody debris in mountains stream channel modeling in Central Europe (Germany, Poland). In: A. Herrmann (ed.) Landschaftoekologie und Umweltforschung 48, 189–198.Google Scholar
  13. Kozak, J., K. Ostapowicz, A. Bytnerowicz, and B. Wyżga (2013), The Carpathian Mountains: Challenges for the Central and Eastern European landmark. In: J. Kozak, K. Ostapowicz, A. Bytnerowicz, and B. Wyżga (eds.), The Carpathians: Integrating Nature and Society Towards Sustainability, Springer, Berlin Heidelberg, 1–11, DOI: 10.1007/978-3-642-12725-0_1.CrossRefGoogle Scholar
  14. Kundzewicz, Z.W. (ed.) (2012), Changes in Flood Risk in Europe, Special Publication No. 10, IAHS Press, Wallingford, 516 pp.Google Scholar
  15. Kundzewicz, Z.W., and H.-J. Schellnhuber (2004), Floods in the IPCC TAR perspective, Nat. Hazards 31,1, 111–128, DOI: 10.1023/B:NHAZ. 0000020257.09228.7b.CrossRefGoogle Scholar
  16. Kundzewicz, Z.W., D. Graczyk, T. Maurer, I. Pińskwar, M. Radziejewski, C. Svensson, and M. Szwed (2005), Trend detection in river flow series: 1. Annual maximum flow, Hydrol. Sci. J. 50,5, 797–810, DOI: 10.1623/hysj.2005.50.5.797.CrossRefGoogle Scholar
  17. Kundzewicz, Z.W., M. Radziejewski, and I. Pińskwar (2006), Precipitation extremes in the changing climate of Europe, Clim. Res. 31,1, 51–58, DOI: 10.3354/cr031051.CrossRefGoogle Scholar
  18. Kundzewicz, Z.W., A. Dobrowolski, H. Lorenc, T. Niedźwiedź, I. Pińskwar, and P. Kowalczak (2012), Floods in Poland. In: Z.W. Kundzewicz (ed.), Changes in Flood Risk in Europe, Special Publication No. 10, Ch. 17, IAHS Press, Wallingford, 319–334.CrossRefGoogle Scholar
  19. Kundzewicz, Z.W., I. Pińskwar, and G.R. Brakenridge (2013), Large floods in Europe, 1985–2009, Hydrol. Sci. J. 58,1, 1–7, DOI: 10.1080/02626667.2012.745082.CrossRefGoogle Scholar
  20. Lassettre, N.S., and G.M. Kondolf (2012), Large woody debris in urban stream channels: redefining the problem, River Res. Appl. 28,9, 1477–1487, DOI:10.1002/rra.1538.CrossRefGoogle Scholar
  21. Lyn, D.A., T.J. Cooper, C.A. Condon, and L. Gan (2007), Factors in debris accumulation at bridge piers, Publication No. FHWA/IN/JTRP-2006/36, Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, USA, DOI: 10.5703/1288284313364.CrossRefGoogle Scholar
  22. Łupikasza, E. (2010), Spatial and temporal variability of extreme precipitation in Poland in the period 1951–2006, Int. J. Climatol. 30,7, 991–1007, DOI: 10.1002/joc.1950.Google Scholar
  23. Mao, L., and F. Comiti (2010), The effects of large wood elements during an extreme flood in a small tropical basin of Costa Rica. In: D. De Wrachien and C.A. Brebbia (eds.), Debris Flow III, WIT Press, Southampton, 225–236, DOI: 10.2495/DEB100191.Google Scholar
  24. Milly, P.C.D., J. Betancourt, M. Falkenmark, R.M. Hirsch, Z.W. Kundzewicz, D.P. Lettenmaier, and R.J. Stouffer (2008), Stationarity is dead: whither water management? Science 319,5863, 573–574, DOI: 10.1126/science.1151915.CrossRefGoogle Scholar
  25. Niedźwiedź, T. (1992), Climate of the Tatra Mountains, Mt. Res. Dev. 12,2, 131–146, DOI: 10.2307/3673787.CrossRefGoogle Scholar
  26. Niedźwiedź, T. (1999), Rainfall characteristics in southern Poland during the severe flooding event of July 1997, Stud. Geomorph. Carp.-Balcan. 33,5-25.Google Scholar
  27. Niedźwiedź, T. (2003), Extreme precipitation events on the northern side of the Tatra Mountains, Geogr. Pol. 76,2, 15–23.Google Scholar
  28. Niedźwiedź, T., E. Łupikasza, I. Pińskwar, Z.W. Kundzewicz, M. Stoffel, and Ł. Małarzewski (2014), Climatological background of floods at the northern foothills of the Tatra Mountains, Theor. Appl. Climatol. (in print).Google Scholar
  29. Pińskwar, I. (2010), Projections of changes in precipitation extremes in Poland, Monografie Komitetu Gospodarki Wodnej PAN, No. 32, Warszawa, 153 pp. (in Polish).Google Scholar
  30. Ruiz-Villanueva, V. (2012), New methods for the analysis of flash flood hazard and risk in mountain basins, Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain (unpublished; in Spanish and English).Google Scholar
  31. Ruiz-Villanueva, V., A. Díez-Herrero, M. Stoffel, M. Bollschweiler, J.M. Bodoque, and J.A. Ballesteros (2010), Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain), Geomorphology 118,3–4, 383–392, DOI: 10.1016/j.geomorph.2010.02.006.CrossRefGoogle Scholar
  32. Ruiz-Villanueva, V., J.M. Bodoque, A. Díez-Herrero, M.A. Eguibar, and E. Pardo-Igúzquiza (2013), Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin, Hydrol. Process. 27,24, 3424–3437, DOI: 10.1002/hyp.9433.CrossRefGoogle Scholar
  33. Schmocker, L., and W.H. Hager (2011), Probability of drift blockage at bridge decks, J. Hydraul. Eng. 137,4, 470–479, DOI: 10.1061/(ASCE)HY.1943-7900.0000319.CrossRefGoogle Scholar
  34. Stoffel, M. (2010), Magnitude-frequency relationships of debris flows — A case study based on field surveys and tree-ring records, Geomorphology 116,1–2, 67–76, DOI: 10.1016/j.geomorph.2009.10.009.CrossRefGoogle Scholar
  35. Stoffel, M., D. Conus, M.A. Grichting, I. Lièvre, and G. Maître (2008), Unraveling the patterns of late Holocene debris-flow activity on a cone in the Swiss Alps: Chronology, environment and implications for the future, Global Planet. Change 60,3–4, 222–234, DOI: 10.1016/j.gloplacha.2007.03.001.CrossRefGoogle Scholar
  36. Wyżga, B. (1997), Methods for studying the response of flood flows to channel change, J. Hydrol. 198,1–4, 271–288, DOI: 10.1016/S0022-1694(96)03289-1.Google Scholar
  37. Wyżga, B. (2008), A review on channel incision in the Polish Carpathian rivers during the 20th century. In: H. Habersack, H. Piégay, and M. Rinaldi (eds.), Gravel-Bed Rivers VI — From Process Understanding to River Restoration, Elsevier, Amsterdam, 525–555.Google Scholar
  38. Wyżga, B., and J. Zawiejska (2005), Wood storage in a wide mountain river: case study of the Czarny Dunajec, Polish Carpathians, Earth Surf. Process. Landforms 30,12, 1475–1494, DOI: 10.1002/esp.1204.CrossRefGoogle Scholar
  39. Wyżga, B., and J. Zawiejska (2010), Large wood storage in channelized and unmanaged sections of the Czarny Dunajec River, Polish Carpathians: Implications for the restoration of mountain rivers, Folia Geogr. Ser. Geogr.-Phys. 41, 5–34.Google Scholar
  40. Wyżga, B., J. Zawiejska, A. Radecki-Pawlik, and H. Hajdukiewicz (2012), Environmental change, hydromorphological reference conditions and the restoration of Polish Carpathian rivers, Earth Surf. Process. Landforms 37,11, 1213–1226, DOI: 10.1002/esp.3273.CrossRefGoogle Scholar
  41. Zawiejska, J., and B. Wyżga (2010), Twentieth-century channel change on the Dunajec River, southern Poland: Patterns, causes and controls, Geomorphology 117,3–4, 234–246, DOI: 10.1016/j.geomorph.2009.01.014.CrossRefGoogle Scholar
  42. Zimmermann, M., and W. Haeberli (1992), Climatic change and debris flow activity in high-mountain areas — A case study in the Swiss Alps, Catena Suppl. 22, 59–72.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Zbigniew W. Kundzewicz
    • 1
  • Markus Stoffel
    • 2
  • Ryszard J. Kaczka
    • 3
  • Bartłomiej Wyżga
    • 3
    • 4
  • Tadeusz Niedźwiedź
    • 3
  • Iwona Pińskwar
    • 1
  • Virginia Ruiz-Villanueva
    • 2
  • Ewa Łupikasza
    • 3
  • Barbara Czajka
    • 3
  • Juan Antonio Ballesteros-Canovas
    • 2
  • Łukasz Małarzewski
    • 3
  • Adam Choryński
    • 1
  • Karolina Janecka
    • 3
  • Paweł Mikuś
    • 3
    • 4
  1. 1.Institute for Agricultural and Forest EnvironmentPolish Academy of SciencesPoznańPoland
  2. 2.Institute of Geological SciencesUniversity of BerneBerneSwitzerland
  3. 3.Faculty of Earth SciencesUniversity of SilesiaSosnowiecPoland
  4. 4.Institute of Nature ConservationPolish Academy of SciencesKrakówPoland

Personalised recommendations