Advertisement

Acta Geophysica

, Volume 62, Issue 2, pp 350–366 | Cite as

Optical properties of long-range transported volcanic ash over Romania and Poland during Eyjafjallajökull eruption in 2010

  • Anca Nemuc
  • Iwona S. Stachlewska
  • Jeni Vasilescu
  • Anna Górska
  • Doina Nicolae
  • Camelia Talianu
Research Article

Abstract

After Eyjafjallajökull volcano eruption on 14 April 2010, due to a complex air mass circulation, Romania was exposed to volcanic ash and its mixture with continental aerosols. Ash particles with an average Ångström (UV-VIS) exponent of 1.4 ± 0.2 and (VIS-IR) of 1.2 ± 0.3, a color ratio (VIS-UV) of 0.54 and (IR-VIS) of 0.49, an average particle depolarization value ∼9.4%, and a lidar ratio of 50 sr were retrieved on 18 April from multiwavelength Raman lidar measurements in Bucharest. Mixed volcanic ash with mineral dust particles advected from Sahara, depolarization ∼12%, Ångström (UV-VIS) exponent of 1.25 ± 0.25 and (VIS-IR) of 1.45 ± 0.25, an increased color ratio (VIS-UV) of 0.61, (IRVIS) of 0.39 and lidar ratio of 53 sr were identified on 28 April. From observations in Poland conducted by an elastic lidar at 532 nm and a ceilometer at 1064 nm we retrieved an average backscatter related Ångström (VIS-IR) exponent of 1.25 ± 0.35, and a color ratio (IR-VIS) of 0.53 in the layer at about 5.5 km during the night of 16/17 April, indicating fresh ash over Warsaw.

Key words

lidar ceilometer volcanic ash mineral dust 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansmann, A., M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michaelis (1992), Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio, Appl. Phys. B 55,1, 18–28, DOI: 10.1007/BF00348608.CrossRefGoogle Scholar
  2. Ansmann, A., M. Tesche, S. Gross, V. Freudenthaler, P. Seifert, A. Hiebsch, J. Schmidt, U. Wandinger, I. Mattis, D. Müller, and M. Wiegner (2010), The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett. 37,13, L13810, DOI: 10.1029/2010GL043809.CrossRefGoogle Scholar
  3. Ansmann, A., M. Tesche, P. Seifert, S. Gross, V. Freudenthaler, A. Apituley, K.M. Wilson, I. Serikov, H. Linné, B. Heinold, A. Hiebsch, F. Schnell, J. Schmidt, I. Mattis, U. Wandinger, and M. Wiegner (2011), Ash and finemode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010, J. Geophys. Res. 116,D20, D00U02, DOI: 10.1029/2010JD015567.Google Scholar
  4. Belegante, L., D. Nicolae, A. Nemuc, C. Talianu, and C. Derognat (2014), Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model, Acta Geophys. 62,2, 276–289, DOI: 10.2478/s11600-013-0167-4 (this issue).CrossRefGoogle Scholar
  5. Carstea, E., R. Radulescu, L. Belegante, and C. Radu (2010), Volcanic ash monitoring over Bucharest area using a multiwavelength Raman lidar, Optoelectron. Adv. Mater Rapid Commun. 4,12, 2162–2166.Google Scholar
  6. Draxler, R.R., and G.D. Rolph (2010), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory), NOAA Air Resources Laboratory, Silver Spring, USA, Model access via NOAA ARL READY, http://ready.arl.noaa.gov/HYSPLIT.php.Google Scholar
  7. Durant, A.J., C. Bonadonna, and C.J. Horwell (2010), Atmospheric and environmetal impacts of volcanic particulates, Elements 6,4, 235–240, DOI: 10.2113/gselements.6.4.235.CrossRefGoogle Scholar
  8. Fernald, F.G. (1984), Analysis of atmospheric lidar observations: some comments, Appl. Optics 23,5, 652–653, DOI: 10.1364/AO.23.000652.CrossRefGoogle Scholar
  9. Flentje, H., H. Claude, T. Elste, S. Gilge, U. Köhler, C. Plass-Dülmer, W. Steinbrecht, W. Thomas, A. Werner, and W. Fricke (2010), The Eyjafjallajökull eruption in April 2010 — detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles, Atmos. Chem. Phys. 10,20, 10085–10092, DOI: 10.5194/acp-10-10085-2010.CrossRefGoogle Scholar
  10. Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner (2009), Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B 61,1, 165–179, DOI: 10.1111/j.1600-0889.2008.00396.x.CrossRefGoogle Scholar
  11. Gasteiger, J., S. Gross, V. Freudenthaler, and M. Wiegner (2011), Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements, Atmos. Chem. Phys. 11,5, 2209–2223, DOI: 10.5194/acp-11-2209-2011.CrossRefGoogle Scholar
  12. Gross, S., V. Freudenthaler, M. Wiegner, J. Gasteiger, A. Geiss, and F. Schnell (2012), Dual-wavelength linear depolarization ratio of volcanic aerosols: Lidar measurements of the Eyjafjallajökull plume over Maisach, Germany, Atmos. Environ. 48, 85–96, DOI: 10.1016/j.atmosenv.2011.06.017.CrossRefGoogle Scholar
  13. Hegerl, G., F. Zwiers, P. Braconnot, N. Gillett, Y. Luo, J. Marengo, N. Nicholls, J. Penner, and P. Stott (2007), Understanding and attributing climate change. In: S. Solomon et al. (ed.), Climate Change 2007. The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 663–745, Cambridge Univ. Press, Cambridge.Google Scholar
  14. Hess, M., P. Koepke, and I. Schult (1998), Optical properties of aerosols and clouds: the software package OPAC, Bull. Am. Meteor. Soc. 79,5, 831–844, DOI: 10.1175/1520-0477(1998)079〈0831:OPOAAC〉2.0.CO;2.CrossRefGoogle Scholar
  15. Karasiński, G., M. Posyniak, M. Bloch, P. Sobolewski, Ł. Małarzewski, and J. Soroka (2014), Lidar observations of volcanic dust over Polish Polar Station at Hornsund after eruptions of Eyjafjallajökull and Grímsvötn, Acta Geophys. 62,2, 316–339, DOI: 10.2478/s11600-013-0183-4 (this issue).CrossRefGoogle Scholar
  16. Klett, J.D. (1981), Stable analytical inversion solution for processing lidar returns, Appl. Optics 20,2, 211–220, DOI: 10.1364/AO.20.000211.CrossRefGoogle Scholar
  17. Klett, J.D. (1985), Lidar inversion with variable backscatter/extinction ratios, Appl. Optics 24,11, 1638–1643, DOI: 10.1364/AO.24.001638.CrossRefGoogle Scholar
  18. Markowicz, K.M., T. Zielinski, A. Pietruczuk, M. Posyniak, O. Zawadzka, P. Makuch, I.S. Stachlewska, A.K. Jagodnicka, T. Petelski, W. Kumala, P. Sobolewski, and T. Stacewicz (2012), Remote sensing measurements of the volcanic ash plume over Poland in April 2010, Atmos. Environ. 48, 66–75, DOI: 10.1016/j.atmosenv.2011.07.015.CrossRefGoogle Scholar
  19. Mather, T.A., A.G. Allen, C. Oppenheimer, D.M. Pyle, and A.J.S. McGonigle (2003), Size-resolved characterisation of soluble ions in the particles in the tropospheric plume of Masaya volcano, Nicaragua: Origins and plume processing, J. Atmos. Chem. 46,3, 207–237, DOI: 10.1023/A:1026327502060.CrossRefGoogle Scholar
  20. McCormick, M.P., L.W. Thomason, and C.R. Trepte (1995), Atmospheric effects of the Mt Pinatubo eruption, Nature 373,6513, 399–404, DOI: 10.1038/373399a0.CrossRefGoogle Scholar
  21. McNeil, W.R., and A.I. Carswell (1975), Lidar polarization studies of the troposphere, Appl. Optics 14,9, 2158–2168, DOI: 10.1364/AO.14.002158.CrossRefGoogle Scholar
  22. Mona, L., A. Amodeo, G. D’Amico, A. Giunta, F. Madonna, and G. Pappalardo (2012), Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, southern Italy, Atmos. Chem. Phys. 12, 2229–2244, DOI: 10.5194/acp-12-2229-2012.CrossRefGoogle Scholar
  23. Nemuc, A., L. Belegante, and R. Radulescu (2011), One year of sunphotometer measurements in Romania, Rom. J. Phys. 56,3–4, 550–562.Google Scholar
  24. Nicolae, D., C. Talianu, R.-E. Mamouri, E. Carstea, A. Papayannis, and G. Tsaknakis (2008), Air mass modification processes over the Balkans area detected by aerosol Lidar techniques, Optoelectron. Adv. Mater. Rapid Commun. 2,6, 394–402.Google Scholar
  25. Nicolae, D., A. Nemuc, and L. Belegante (2010a), Mix of volcanic ash and Saharan dust over Romania during Eyjafjallajökull eruption. In: Proc. SPIE, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VI, 26 October 2010, Vol. 7832, DOI: 10.1117/12.869021.Google Scholar
  26. Nicolae, D., J. Vasilescu, E. Carstea, K. Stebel, and F. Prata (2010b), Romanian atmospheric research 3D observatory: Synergy of instruments, Rom. Rep. Phys. 62,4, 838–853.Google Scholar
  27. Papayannis, A., R.E. Mamouri, V. Amiridis, E. Giannakaki, I. Veselovskii, P. Kokkalis, G. Tsaknakis, D. Balis, N.I. Kristiansen, A. Stohl, M. Korenskiy, K. Allakhverdiev, M.F. Huseyinoglu, and T. Baykara (2012), Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajokull eruption in May 2010, Atmos. Environ. 48, 56–65, DOI: 10.1016/j.atmosenv.2011.08.037.CrossRefGoogle Scholar
  28. Pappalardo, G., A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, C. Böckmann, A. Chaikovsky, A. Comeron, G. D’Amico, F. De Tomasi, V. Freudenthaler, E. Giannakaki, A. Giunta, I. Grigorov, O. Gustafsson, S. Gross, M. Haeffelin, M. Iarlori, S. Kinne, H. Linné, F. Madonna, R. Mamouri, I. Mattis, M. McAuliffe, F. Molero, L. Mona, D. Műller, V. Mitev, D. Nicolae, A. Papayannis, M.R. Perrone, A. Pietruczuk, M. Pujadas, J.-P. Putaud, F. Ravetta, V. Rizi, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, T. Trickl, U. Wandinger, X. Wang, F. Wagner, and M. Wiegner (2010), Dispersion and evolution of the Eyjafjallajökull ash plume over Europe: vertically resolved measurements with the European LIDAR network EARLINET. In: 7th European Geosciences Union General Assembly 2010, 2–7 May 2010, Vienna, Austria, EGU2010-15731.Google Scholar
  29. Pappalardo, G., L. Mona, G. D’Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, J.A. Boselli, J.A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Gross, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M.A.P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M.R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preissler, M. Pujadas, V. Rizi, A.A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K.M. Wilson (2012), Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET, Atmos. Chem. Phys. Discuss. 12,11, 30203–30257, DOI: 10.5194/acpd-12-30203-2012.CrossRefGoogle Scholar
  30. Pietruczuk, A., J.W. Krzyścin, J. Jarosławski, J. Podgórski, P. Sobolewski, and J. Wink (2010), Eyjafjallajökull volcano ash observed over Belsk (52°N, 21°E), Poland, in April 2010, Int. J. Remote Sens. 31,15, 3981–3986, DOI: 10.1080/01431161.2010.498030.CrossRefGoogle Scholar
  31. Radu, C., L. Belegante, C. Talianu, and D. Nicolae (2010), Optimization of the multiwavelength Raman lidar during EARLI09 campaign, J. Optoecectron. Adv. Mater. 12,1, 165–168.Google Scholar
  32. Raes, F., R. Van Dingenen, E. Vignati, J. Wilson, J.-P. Putaud, J.H. Seinfeld, and P. Adams (2000), Formation and cycling of aerosols in the global troposphere, Atmos. Env. 34,25, 4215–4240, DOI: 10.1016/S1352-2310(00)00239-9.CrossRefGoogle Scholar
  33. Rozwadowska, A., and P. Sobolewski (2010), Variability in aerosol optical properties at Hornsund, Spitsbergen, Oceanologia 52,4, 599–620, DOI: 10.5697/oc.52-4.599.CrossRefGoogle Scholar
  34. Sokół, P., I.S. Stachlewska., I. Ungureanu, and S. Stefan (2014), Evaluation of the boundary layer morning transition using the CL-31 ceilometer signals, Acta Geophys. 62,2, 367–380, DOI: 10.2478/s11600-013-0158-5 (this issue).CrossRefGoogle Scholar
  35. Stachlewska, I.S., and K.M. Markowicz (2010), On forward Klett’s inversion of ceilometer signals. In: Reviewed Papers of 25th International Laser Radar Conference, 5–9 July 2010, St. Petersburg, Russia, 1154–1157.Google Scholar
  36. Stachlewska, I.S., R. Neuber, A. Lampert, C. Ritter, and G. Wehrle (2010), AMALi — the Airborne Mobile Aerosol Lidar for Arctic research, Atmos. Chem. Phys. 10,6, 2947–2963, DOI: 10.5194/acp-10-2947-2010.CrossRefGoogle Scholar
  37. Stachlewska, I.S., M. Piądłowski, S. Migacz, A. Szkop, A.J. Zielińska, and P.L. Swaczyna (2012), Ceilometer observations of the boundary layer over Warsaw, Poland, Acta Geophys. 60,5, 1386–1412, DOI: 10.2478/s11600-012-0054-4.CrossRefGoogle Scholar
  38. Szkop, A. (2012), Two-angle approach for extinction coefficient and optical depth determination from ceilometer data, M.Sc. Thesis, Archive of Diplomas, University of Warsaw, https://apd.uw.edu.pl.Google Scholar
  39. Timofte, A., M.M. Cazacu, R. Radulescu, L. Belegante, D.G. Dimitriu, and S. Gurlui (2011), Romanian Lidar investigation of the Eyjafjallajökull volcanic ash, Environ. Eng. Manag. J. 10,1, 91–97.Google Scholar
  40. Vasilescu, J., A. Nemuc, L. Marmureanu, and D. Nicolae (2011), Aerosol size distribution and composition near Bucharest during May 2010, Environ. Eng. Manag. J. 10,1, 121–126.Google Scholar
  41. Wiegner, M., and A. Geiss (2012), Aerosol profiling with the JenOptik ceilometer CHM15kx, Atmos. Meas. Tech. 5,8, 1953–1964, DOI: 10.5194/amt-5-1953-2012.CrossRefGoogle Scholar
  42. Witham, C.S., M.C. Hort, R. Potts, R. Servranckx, P. Husson, and F. Bonnardot (2007), Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvötn eruption, Meteorol. Appl. 14,1, 27–38, DOI: 10.1002/met.3.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Anca Nemuc
    • 1
  • Iwona S. Stachlewska
    • 2
  • Jeni Vasilescu
    • 1
  • Anna Górska
    • 2
  • Doina Nicolae
    • 1
  • Camelia Talianu
    • 1
  1. 1.National Institute of R&D for Optoelectronics RomaniaMagureleRomania
  2. 2.Institute of Geophysics, Faculty of PhysicsUniversity of Warsaw (IGFUW)WarsawPoland

Personalised recommendations