Acta Geophysica

, Volume 62, Issue 2, pp 276–289 | Cite as

Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model

  • Livio Belegante
  • Doina Nicolae
  • Anca Nemuc
  • Camelia Talianu
  • Claude Derognat
Research Article


In this study, we used boundary layer heights derived from lidar in Romania to validate the Weather Research Forecast (WRF) model improved by ARIA Technologies SA in the framework of ROMAIR LIFE project. Lidar retrievals were also compared to the retrievals from meteorological data, both modeled (Global Data Assimilation System; GDAS) and measured (microwave radiometry). Both the gradient and the wavelet covariance methods were used to compute the boundary layer height (BLH) from the range corrected lidar signal, and their equivalence was shown.

The analysis was performed on 102 datasets, spread over all seasons and 3 years (2009–2011). A good agreement was found for the remote sensors (lidar and microwave radiometer) which are co-located and measure simultaneously. The correlation of the measured boundary layer height and the modelled one was 0.66 for the entire dataset, and 0.73 when considering daytime data, i.e., for a well defined boundary layer. A systematic underestimation of the boundary layer height by the WRF during non-convective periods (nocturne, stable atmosphere) was found.

Key words

lidar microwave radiometer WRF boundary layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angevine, W.M., A.B. White, and S.K. Avery (1994), Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler, Bound.-Lay. Meteorol. 68,4, 375–385, DOI: 10.1007/BF00706797.CrossRefGoogle Scholar
  2. Baars, H., A. Ansmann, R. Engelmann, and D. Althausen (2008), Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys. 8,3, 7281–7296, DOI: 10.5194/acp-8-7281-2008.CrossRefGoogle Scholar
  3. Cohn, S.A., and W.M. Angevine (2000), Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars, J. Appl. Meteor. 39,8, 1233–1247, DOI: 10.1175/1520-0450(2000)039〈1233:BLHAEZ〉2.0. CO;2.CrossRefGoogle Scholar
  4. Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner (2009), Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B 61,1, 165–179, DOI: 10.1111/j.1600-0889.2008.00396.x.CrossRefGoogle Scholar
  5. Hong, S.-Y., and H.-L. Pan (1996), Nonlocal boundary layer vertical diffusion in a medium-range forecast model, Mon. Wea. Rev. 124,10, 2322–2339, DOI: 10.1175/1520-0493(1996)124〈2322:NBLVDI〉2.0.CO;2.CrossRefGoogle Scholar
  6. Hong, S.-Y., Y. Noh, and J. Dudhia (2006), A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Wea. Rev. 134,9, 2318–2341, DOI: 10.1175/MWR3199.1.CrossRefGoogle Scholar
  7. Honoré, C., L. Rouïl, R. Vautard, M. Beekmann, B. Bessagnet, A. Dufour, C. Elichegaray, J.-M. Flaud, L. Malherbe, F. Meleux, L. Menut, D. Martin, A. Peuch, V.-H. Peuch, and N. Poisson (2008), Predictability of European air quality: Assessment of three years of operational forecasts and analyses by the PREV’AIR system, J. Geophys. Res. 113,D4, D04301, DOI: 10.1029/2007JD 008761.CrossRefGoogle Scholar
  8. Jacobson, M.Z. (2005), Fundamentals of Atmospheric Modeling, 2nd ed., Cambridge University Press, Cambridge, 813 pp.CrossRefGoogle Scholar
  9. Löhnert, U., and O. Maier (2011), Assessing the potential of passive microwave radiometers for continuous temperature profile retrieval using a three year data set from Payerne, Atmos. Meas. Tech. Discuss. 4, 7435–7469, DOI: 10.5194/amtd-4-7435-2011.CrossRefGoogle Scholar
  10. Löhnert, U., S. Crewell, O. Krasnov, E. O’Connor, and H. Russchenberg (2008), Advances in continuously profiling the thermodynamic state of the boundary layer: Integration of measurements and methods, J. Atmos. Oceanic Technol. 25,8, 1251–1266, DOI: 10.1175/2007JTECHA961.1.CrossRefGoogle Scholar
  11. Noh, Y., W.G. Cheon, S.Y. Hong, and S. Raasch (2003), Improvement of the Kprofile model for the planetary boundary layer based on large eddy simulation data, Bound.-Lay. Meteorol. 107,2, 401–427, DOI: 10.1023/A:1022146015946.CrossRefGoogle Scholar
  12. Pappalardo, G. (2010), EARLINET: the European Lidar network for aerosol study at continental scale, EARSeL Newslett. 82, 13–18.Google Scholar
  13. Radu, C., L. Belegante, C. Talianu, and D. Nicolae (2010), Optimization of the multiwavelength Raman lidar during EARLI09 campaign, J. Optoelectron. Adv. Mat. 12,1, 165–168.Google Scholar
  14. Rahn, D.A., and R. Garreaud (2010), Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx — Part 1: Mean structure and diurnal cycle, Atmos. Chem. Phys. 10, 4491–4506, DOI: 10.5194/acp-10-4491-2010.CrossRefGoogle Scholar
  15. Sorbjan, Z. (1989), Structure of the Atmospheric Boundary Layer, Prentice Hall, Englewood Cliffs, 317 pp.Google Scholar
  16. Stachlewska, I.S., M. Piądłowski, S. Migacz, A. Szkop, A.J. Zielińska, and P.L. Swaczyna (2012), Ceilometer observations of the boundary layer over Warsaw, Poland, Acta Geophys. 60,5, 1386–1412, DOI: 10.2478/s11600-012-0054-4.CrossRefGoogle Scholar
  17. Stull, R.B. (1988), An Introduction to Boundary Layer Meteorology, Kluwer Academic Publ., Dordrecht, 666 pp.CrossRefGoogle Scholar
  18. Talianu, C., D. Nicolae, J. Ciuciu, M. Ciobanu, and V. Babin (2006), Planetary boundary layer height detection from LIDAR measurements, J. Optoelectron. Adv. Mat. 8,1, 243–246.Google Scholar
  19. Wang, S., L.W. O’Neill, Q. Jiang, S.P. de Szoeke, X. Hong, H. Jin, W.T. Thompson, and X. Zheng (2011), A regional real-time forecast of marine boundary layers during VOCALS-REx, Atmos. Chem. Phys. 11,2, 421–437, DOI: 10.5194/acp-11-421-2011.CrossRefGoogle Scholar
  20. White, J.M., J.F. Bowers, S.R. Hanna, and J.K. Lundquist (2009), Importance of using observations of mixing depths in order to avoid large prediction errors by a transport and dispersion model, J. Atmos. Ocean. Technol. 26,1, 22–32, DOI: 10.1175/2008JTECHA 1134.1.CrossRefGoogle Scholar
  21. Wu, W.S. (2005), Background error for NCEP’s GSI analysis in regional mode. In: Proc. Fourth WMO Int. Symp. on Assimilation of Observations in Meteorology and Oceanography, Prague, Czech Republic, 3A.27.Google Scholar
  22. Wyant, M.C., R. Wood, C.S. Bretherton, C.R. Mechoso, J. Bacmeister, M.A. Balmaseda, B. Barrett, F. Codron, P. Earnshaw, J. Fast, C. Hannay, J.W. Kaiser, H. Kitagawa, S.A. Klein, M. Köhler, J. Manganello, H.-L. Pan, F. Sun, S. Wang, and Y. Wang (2010), The PreVOCA experiment: modeling the lower troposphere in the Southeast Pacific, Atmos. Chem. Phys. 10, 4757–4774, DOI: 10.5194/acp-10-4757-2010.CrossRefGoogle Scholar
  23. Xie, F., D.L. Wu, C.O. Ao, A.J. Mannucci, and E.R. Kursinski (2012), Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean, Atmos. Chem. Phys. 12, 903–918, DOI: 10.5194/acp-12-903-2012.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Livio Belegante
    • 1
  • Doina Nicolae
    • 1
  • Anca Nemuc
    • 1
  • Camelia Talianu
    • 1
  • Claude Derognat
    • 2
  1. 1.National Institute of R&D for OptoelectronicsMagurele, IlfovRomania
  2. 2.ARIA Technologies SABoulogne BillancourtFrance

Personalised recommendations