Advertisement

Acta Geophysica

, Volume 61, Issue 6, pp 1598–1625 | Cite as

Field experiment in Soultz-sous-Forêts, 1993: Changes of the pattern of induced seismicity

  • Vladimir Smirnov
  • Alexander Ponomarev
  • Pascal Bernard
  • Seid Bourouis
Research Article

Abstract

The data of the known field experiment on water injection in the borehole were analyzed. Parameters of self-similarity of seismicity were estimated in comparison with the changes of water pressure. Changes of seismicity parameters that indicate the redistribution of the failure from lower scales to upper are revealed. The total number of earthquakes per series of the water initiation found to be depended exponentially on the water pressure and seismic activity maximum is delayed gradually relative to beginning of initiation. The growth of induced seismicity zone in time differs from diffusion model for water flow in the porous medium. Analysis carried out from laboratory data indicates that diffusion growth of the failure area may be realized in the dry specimen, without fluid. It could be assumed that both kinetic processes — water and the failure diffusion — can be significant for the development of seismicity induced by the water injection.

Key words

induced seismicity seismicity parameters diffusion kinetic process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, S., and N. Suzuki (2012), Aftershocks in modern perspectives: Complex earthquake network, aging, and non-Markovianity, Acta Geophys. 60,3, 547–561, DOI 10.2478/s11600-012-0026-8.CrossRefGoogle Scholar
  2. Abercrombie, R., A. McGarr, H. Kanamori, and G. Di Torro (eds.) (2000), Earthquakes: Radiated Energy and the Physics of Faulting, AGU Geophysical Monograph Series, Vol. 170, 327 pp.Google Scholar
  3. Aki, K. (1965), Maximum likelihood estimate of b in the formula log N = a — bM and its confidence limits, Bull. Earthq. Res. Inst., Tokyo Univ. 43,2, 237–239.Google Scholar
  4. Aki, K. (1981), A probabilistic synthesis of precursory phenomena. In: D.W. Simpson and P.G. Richards (eds.), Earthquake Prediction: An International Review, Maurice Ewing Series, Vol. 4, AGU, Washington, D.C., 566–574, DOI 10.1029/ME004p0566.Google Scholar
  5. Bachmann, C., S. Wiemer, and J. Woessner (2010), The induced Basel 2006 earthquake sequence: Mapping seismicity parameters on small scales. In: Abstract Book. The 32nd General Assembly of European Seismological Commission. Montpellier, France.Google Scholar
  6. Bak, P., K. Christensen, L. Danon, and T. Scanlon (2002), Unified scaling law for earthquakes, Phys. Rev. Lett. 88,17, 178501–178504, DOI 10.1103/Phys RevLett.88.178501.CrossRefGoogle Scholar
  7. Bird, P. (2003), An updated digital model of plate boundaries, Geochem. Geophys. Geosyst. 4,3, 1027, DOI 10.1029/2001GC000252.CrossRefGoogle Scholar
  8. Bormann, P. (ed.) (2002), New Manual of Seismological Observatory Practice, GeoForschungsZentrum, Potsdam.Google Scholar
  9. Bourouis, S., and P. Bernard (2007), Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients, Geophys. J. Int. 169,2, 723–732, DOI 10.1111/j.1365-246X.2006.03325.x.CrossRefGoogle Scholar
  10. Chelidze, T.L. (1986), Percolation theory as a tool for imitation of fracture process in rocks, Pure Appl. Geophys. 124,4–5, 731–748, DOI 10.1007/BF 00879607.CrossRefGoogle Scholar
  11. Chelidze, T.L. (1990), Generalized fractal law of seismicity, Doklady. Akad. Nauk SSSR 314,5, 1104–1105.Google Scholar
  12. Chelidze, T., T. Reuschle, and Y. Gueguen (1994), A theoretical investigation of the fracture energy of heterogeneous brittle materials, J. Phys. Condens. Mat. 6,10, 1857–1868, DOI 10.1088/0953-8984/6/10/005.CrossRefGoogle Scholar
  13. Cladouhos, T.T., and R. Marrett (1996), Are fault growth and linkage models consistent with power-law distributions of fault lengths? J. Struct. Geol. 18,2–3, 281–293, DOI 10.1016/S0191-8141(96)80050-2.CrossRefGoogle Scholar
  14. Cornet, F.H. (2000), Comment on “Large-scale in situ permeability tensor of rocks from induced microseismicity” by S.A. Shapiro, P. Audigane, J.-J. Royer, Geophys. J. Int. 140,2, 465–469, DOI 10.1046/j.1365-246x.2000.00018.x.CrossRefGoogle Scholar
  15. Cornet, F.H., J. Helm, H. Poitrenaud, and A. Etchecopar (1997), Seismic and aseismic slips induced by large-scale fluid injections, Pure Appl. Geophys. 150,3–4, 563–583, DOI 10.1007/s000240050093.CrossRefGoogle Scholar
  16. Corral, Á. (2005), Renormalization-group transformations and correlations of seismicity, Phys. Rev. Lett. 95,2, 028501, DOI 10.1103/PhysRevLett.95.028501.CrossRefGoogle Scholar
  17. Dahm, T., S. Hainzl, and T. Fischer (2010), Bidirectional and unidirectional fracture growth during hydrofracturing: Role of driving stress gradients, J. Geophys. Res. 115,B12, B12322, DOI 10.1029/2009JB006817.CrossRefGoogle Scholar
  18. Daniel, G., E. Prono, F. Renard, F. Thouvenot, S. Hainzl, D. Marsan, A. Helmstetter, P. Traversa, J. L. Got, L. Jenatton, and R. Guiguet (2011), Changes in effective stress during the 2003-2004 Ubaye seismic swarm, France, J. Geophys. Res. 116,B1, B01309, DOI 10.1029/2010JB007551.CrossRefGoogle Scholar
  19. Enescu, B., and K. Ito (2001), Some premonitory phenomena of 1995 Hyogo-Ken Nanbu (Kobe) earthquake: seismicity, b-value and fractal dimension, Tectonophysics 338, 3–4, 297–314, DOI 10.1016/S0040-1951(01)00085-3.Google Scholar
  20. Evans, K.F. (2005), Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 2. Critical stress and fracture strength, J. Geophys. Res. 110,B4, B04204, DOI 10.1029/2004JB003169.CrossRefGoogle Scholar
  21. Evans, K.F., A. Genter, and J. Sausse (2005a), Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations, J. Geophys. Res. 110,B4, B04203, DOI 10.1029/2004JB 003168.CrossRefGoogle Scholar
  22. Evans, K.F., H. Moriya, H. Niitsuma, R.H. Jones, W.S. Phillips, A. Genter, J. Sausse, R. Jung, and R. Baria (2005b), Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site, Geophys. J. Int. 160,1, 389–412, DOI 10.1111/j.1365-246X.2004.02474.x.CrossRefGoogle Scholar
  23. Fischer, T., and A. Guest (2011), Shear and tensile earthquakes caused by fluid injection, Geophys. Res. Lett. 38,5, L05307, DOI 10.1029/2010GL045447.CrossRefGoogle Scholar
  24. Fischer, T., S. Hainzl, L. Eisner, S.A. Shapiro, and J. Le Calvez (2008), Microseismic signatures of hydraulic fracture growth in sediment formations: Observations and modeling, J. Geophys. Res. 113,B2, B02307, DOI 10.1029/2007JB005070.CrossRefGoogle Scholar
  25. Gérard, A., A. Genter, T. Kohl, P. Lutz, P. Rose, and F. Rummel (2006), The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forêts (Alsace, France), Geothermics 35,5–6, 473–483, DOI 10.1016/j.geothermics.2006.12.001.CrossRefGoogle Scholar
  26. Goto, K., and K. Otsuki (2004), Size and spatial distributions of fault populations: Empirically synthesized evolution laws for the fractal geometries, Geophys. Res. Lett. 31,5, L05601, DOI 10.1029/2003GL018868.CrossRefGoogle Scholar
  27. Helmstetter, A., G. Ouillon, and D. Sornette (2003), Are aftershocks of large Californian earthquakes diffusing? J. Geophys. Res. 108,B10, 2483, DOI 10.1029/2003JB002503.CrossRefGoogle Scholar
  28. Hill, D.P. (1977), A model for earthquake swarms, J. Geophys. Res. 82,8, 1347–1352, DOI 10.1029/JB082i008p01347.CrossRefGoogle Scholar
  29. Horálek, J., and T. Fischer (2008), Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms: Just what we know (a review), Stud. Geophys. Geod. 52,4, 455–478, DOI 10.1007/s11200-008-0032-0.CrossRefGoogle Scholar
  30. Huber, P.J., and E.M. Ronchetti (2011), Robust Statistics, 2nd ed., JohnWiley & Sons Inc., New York, 380 pp.Google Scholar
  31. Huc, M., and I.G. Main (2003), Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality, J. Geophys. Res. 108,B7, 2324, DOI 10.1029/2001JB001645.CrossRefGoogle Scholar
  32. Kagan, Y.Y. (2007), Earthquake spatial distribution: the correlation dimension, Geophys. J. Int. 168,3, 1175–1194, DOI 10.1111/j.1365-246X.2006.03251.x.CrossRefGoogle Scholar
  33. Keilis-Borok, V.I., V.G. Kosobokov, and S.A. Mazhkenov (1989), On similarity in the spatial distribution of seismicity, Vychislitel’naya Seismologiya 22, 28–40 (in Russian).Google Scholar
  34. King, G. (1983), The accommodation of large strains in the upper lithosphere of the Earth and other solids by self-similar fault systems: the geometrical origin of b-value, Pure Appl. Geophys. 121,5–6, 761–815, DOI 10.1007/BF 02590182.CrossRefGoogle Scholar
  35. Kosobokov, V.G., and S.A. Mazhkenov (1988), Spatial characteristics of similarity for earthquake sequences: Fractality of seismicity. In: Lecture Notes of the Workshop on Global Geophysical Informatics and Application to Research in Earthquake Prediction and Reduction of Seismic Risk (15 November–16 December 1988), ICTP, Trieste, 1–15.Google Scholar
  36. Kosobokov, V.G., and S.A. Mazhkenov (1994), On similarity in the spatial distribution of seismicity. In: D.K. Chowdhury (ed.), Selected Papers from Volumes 22 and 23 of Vychislitel’naya Seysmologiya, Comput. Seismol. Geodyn., Vol. 1, AGU, Washington, D.C., 6–15, DOI 10.1029/CS001p0006.Google Scholar
  37. Lei, X., K. Kusunose, T. Satoh, and O. Nishizawa (2003), The hierarchical rupture process of a fault: an experimental study, Phys. Earth Planet. In. 137,1–4, 213–228, DOI 10.1016/S0031-9201(03)00016-5.CrossRefGoogle Scholar
  38. Lockner, D.A. (1993), The role of acoustic emission in the study of rock fracture, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30,7, 883–899, DOI 10.1016/0148-9062(93)90041-B.CrossRefGoogle Scholar
  39. Lockner, D.A., and S.A. Stanchits (2002), Undrained poroelastic response of sandstones to deviatoric stress change, J. Geophys. Res. 107,B12, 2353, DOI 10.1029/2001JB001460.CrossRefGoogle Scholar
  40. Lockner, D.A., J.D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin (1991), Quasi-static fault growth and shear fracture energy in granite, Nature 350,6313, 39–42, DOI 10.1038/350039a0.CrossRefGoogle Scholar
  41. Lockner, D.A., D.E. Moore, and Z. Reches (1992a), Microcrack interaction leading to shear fracture. In: Proc. 33rd U.S. Rock Mechanics Symposium, Balkema, Rotterdam, 807–816.Google Scholar
  42. Lockner, D.A., J.D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin (1992b), Observations of quasistatic fault growth from acoustic emissions. In: B. Evans, and T.-F. Wong (eds.), Fault Mechanics and Transport Properties of Rocks, Academic Press Inc., New York, 3–31.CrossRefGoogle Scholar
  43. Main, I.G., P.G. Meredith, and C. Jones (1989), A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics, Geophys. J. Int. 96,1, 131–138, DOI 10.1111/j.1365-246X.1989.tb05255.x.CrossRefGoogle Scholar
  44. Marsan, D., C.J. Bean, S. Steacy, and J. McCloskey (2000), Observation of diffusion processes in earthquake populations and implications for the predictability of seismicity systems, J. Geophys. Res. 105,B12, 28081–28094, DOI 10.1029/2000JB900232.CrossRefGoogle Scholar
  45. Mjachkin, V.I., W.F. Brace, G.A. Sobolev, and J.H. Dieterich (1975), Two models for earthquake forerunners, Pure Appl. Geophys. 113,1, 169–181, DOI 10.1007/BF01592908.CrossRefGoogle Scholar
  46. Mosteller, F., and J.W. Tukey (1977), Data Analysis and Regression. A Second Course in Statistics, Addison-Wesley Series in Behavioral Science: Quantitative Methods, Addison-Wesley, Reading, 588 pp.Google Scholar
  47. Nicol, A., J.J. Walsh, J. Watterson, and P.A. Gillespie (1996), Fault size distributions — are they really power-law? J. Struct. Geol. 18,2–3, 191–197, DOI 10.1016/S0191-8141(96)80044-7.CrossRefGoogle Scholar
  48. Noir, J., E. Jacques, S. Békri, P. M. Adler, P. Tapponnier, and G.C.P. King (1997), Fluid flow triggered migration of events in the 1989 Dobi earthquake sequence of Central Afar, Geophys. Res. Lett. 24,18, 2335–2338, DOI 10.1029/97GL02182.CrossRefGoogle Scholar
  49. Pandey, A.P., and R.K. Chadha (2003), Surface loading and triggered earthquakes in the Koyna-Warna region, western India, Phys. Earth Planet. In. 139,3–4, 207–223, DOI 10.1016/j.pepi.2003.08.003.CrossRefGoogle Scholar
  50. Pisarenko, D.V., and V.F. Pisarenko (1995), Statistical estimation of the correlation dimension, Phys. Lett. A 197,1, 31–39, DOI 10.1016/0375-9601(94) 00923-D.CrossRefGoogle Scholar
  51. Pisarenko, V.F. (1989), About recurrence law of earthquakes. In: M.A. Sadovsky (ed.), Discrete Properties of the Geophysical Environment, Nauka, Moscow, 47–60 (in Russian).Google Scholar
  52. Ponomarev, A.V., A.D. Zavyalov, V.B. Smirnov, and D.A. Lockner (1997), Physical modeling of the formation and evolution of seismically active fault zones, Tectonophysics 277,1–3, 57–81, DOI 10.1016/S0040-1951(97) 00078-4.CrossRefGoogle Scholar
  53. Ponomarev, A., V. Smirnov, A. Patonin, S. Stroganov, and T. Kotlyar (2008), Modeling of transient processes in seismicity: Laboratory experiments (I). In: 31th General Assembly of ESC, 7–12 September 2008, Hersonissos, Crete island, Greece, Abstracts, p. 152.Google Scholar
  54. Reches, Z., and D.A. Lockner (1994), Nucleation and growth of faults in brittle rocks, J. Geophys. Res. 99,B9, 18159–18173, DOI 10.1029/94JB00115.CrossRefGoogle Scholar
  55. Scholz, C.H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge University Press, Cambridge, 471 pp., DOI 10.1017/CBO978 0511818516.CrossRefGoogle Scholar
  56. Shapiro, S.A., and C. Dinske (2009), Scaling of seismicity induced by nonlinear fluid-rock interaction, J. Geophys. Res. 114,B9, B09307, DOI 10.1029/2008JB006145.CrossRefGoogle Scholar
  57. Shapiro, S.A., P. Audigane, and J.-J. Royer (1999), Large-scale in situ permeability tensor of rocks from induced microseismicity, Geophys. J. Int. 137,1, 207–213, DOI 10.1046/j.1365-246x.1999.00781.x.CrossRefGoogle Scholar
  58. Shapiro, S.A., C. Dinske, and J. Kummerow (2007), Probability of a givenmagnitude earthquake induced by a fluid injection, Geophys. Res. Lett. 34,22, L22314, DOI 10.1029/2007GL031615.CrossRefGoogle Scholar
  59. Singh, Ch., P.M. Bhattacharya, and R.K. Chadha (2008), Seismicity in the Koyna-Warna reservoir site in Western India: Fractal and b-value mapping, Bull. Seismol. Soc. Am. 98,1, 476–482, DOI 10.1785/0120070165.CrossRefGoogle Scholar
  60. Smirnov, V.B. (2003), Estimating the duration of the lithospheric failure cycle from earthquake catalogs, Izv. — Phys. Solid Earth 39,10, 794–811.Google Scholar
  61. Smirnov, V.B. and A.V. Ponomarev (2004), Regularities in relaxation of the seismic regime according to natural and laboratory data, Izv. — Phys. Solid Earth 40,10, 807–816.Google Scholar
  62. Smith, W.D. (1981), The b-value as an earthquake precursor, Nature 289,5794, 136–139, DOI 10.1038/289136a0.CrossRefGoogle Scholar
  63. Sobolev, G.A. (2011), Seismicity dynamics and earthquake predictability, Nat. Hazards Earth Syst. Sci. 11, 445–458, DOI 10.5194/nhess-11-445-2011.CrossRefGoogle Scholar
  64. Sornette, D., and V. Pisarenko (2003), Fractal plate tectonics, Geophys. Res. Lett. 30,3, 1105, DOI 10.1029/2002GL015043.CrossRefGoogle Scholar
  65. Turcotte, D.L. (1992), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge, 220 pp.Google Scholar
  66. Vallianatos, F., G. Michas, G. Papadakis, and P. Sammonds (2012), A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece), Acta Geophys. 60,3, 758–768, DOI 10.2478/s11600-012-0011-2.CrossRefGoogle Scholar
  67. Vlahos, L., H. Isliker, Y. Kominis, and K. Hizanidis (2008), Normal and anomalous diffusion: A Tutorial. In: T. Bountis (ed.), Order and Chaos, Vol. 10, Patras University Press, Patras.Google Scholar
  68. Watterson, J., J.J. Walsh, P.A. Gillespie, and S. Easton (1996), Scaling systematics of fault sizes on a large-scale range fault map, J. Struct. Geol. 18,2–3, 199–214, DOI 10.1016/S0191-8141(96)80045-9.CrossRefGoogle Scholar
  69. Wiemer, S., and M. Wyss (2000), Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan, Bull. Seismol. Soc. Am. 90,4, 859–869, DOI 10.1785/0119990114.CrossRefGoogle Scholar
  70. Yielding, G., T. Needham, and H. Jones (1996), Sampling of fault populations using sub-subsurface data: a review, J. Struct. Geol. 18,2–3, 135–146, DOI 10.1016/S0191-8141(96)80039-3.CrossRefGoogle Scholar
  71. Zavyalov, A.D. (2002), Testing the MEE prediction algorithm in various seismically active regions in the 1985-2000 period: Results and analysis, Izv. — Phys. Solid Earth 38,4, 262–275.Google Scholar
  72. Zhang, G., and Z. Fu (1981), Some features of medium- and short-term anomalies before great earthquakes. In: D.W. Simpson and P.G. Richards (eds.), Earthquake Prediction. An International Review, Maurice Ewing Series, Vol. 4, AGU, Washington, D.C., 497–509, DOI 10.1029/ME004p0497.Google Scholar
  73. Zhurkov, S.N. (1965), Kinetic concept of the strength of solids, Int. J. Fract. Mech. 1,4, 311–323.Google Scholar
  74. Zhurkov, S.N., V.S. Kuksenko, V.A. Petrov, V.N. Savlyev, and U. Sultanov (1977), On the problem of prediction of rock fracture, Izv. -Phys. Solid Earth 13,6, 374–379.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Vladimir Smirnov
    • 1
    • 2
  • Alexander Ponomarev
    • 1
  • Pascal Bernard
    • 3
  • Seid Bourouis
    • 3
  1. 1.Schmidt Institute of the Physics of the EarthRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Institut de Physique du Globe de ParisParisFrance

Personalised recommendations