Acta Geophysica

, Volume 61, Issue 6, pp 1457–1476 | Cite as

Assessment of NeQuick ionospheric model for Galileo single-frequency users

  • Antonio Angrisano
  • Salvatore Gaglione
  • Ciro Gioia
  • Marco Massaro
  • Umberto Robustelli
Research Article

Abstract

The ionosphere is the main error source in GNSS measurements and in extreme cases can degrade the positioning significantly, with errors exceeding 100 m; therefore, modelling and predicting of this type of error is crucial and critical. The ionospheric effect can be reduced using different techniques, such as dual-frequency receiver or suitable augmentation system (DGPS, SBAS); the aforesaid approaches involve the use of expensive devices and/or complex architectures. Single frequency stand-alone receivers are the cheapest and most widespread GNSS devices; they can estimate and partially correct the error due to the ionosphere, through adequate algorithms, which use parameters broadcasted by the navigation message. The aim of this paper is performance assessment of the ionospheric model NeQuick, adopted by the European GNSS Galileo for single frequency receivers. The analysis is performed in measurements domain and the data are collected in different geographical locations and in various geomagnetic conditions.

Key words

GNSS Galileo ionospheric models NeQuick Klobuchar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angrisano, A., S. Gaglione, C. Gioia, U. Robustelli, and M. Vultaggio (2012), GIOVE satellites pseudorange error assessment, J. Navigation 65,1, 29–40, DOI: 10.1017/S0373463311000270.CrossRefGoogle Scholar
  2. Azpilicueta, F., B. Nava, P. Coïsson, C. Brunini, and S.M. Radicella (2003), Optimized NeQuick ionospheric model for point positioning. In: Proc. Inter. Symp. on GPS/GNSS, 15-18 November 2003, Tokyo, Japan. Google Scholar
  3. Bassiri, S., and G.A. Hajj (1992), Modeling the GPS signal propagation through the ionosphere, TDA Progress Report 42-110.Google Scholar
  4. Bidaine, B., M. Lonchay, and R. Warnant (2013), Galileo single frequency ionospheric correction: performances in terms of position, GPS Solut. 17,1, 63–73, DOI: 10.1007/s10291-012-0261-0.CrossRefGoogle Scholar
  5. Bilitza, D., and B.W. Reinisch (2008), International Reference Ionosphere 2007: Improvements and new parameters, J. Adv. Space Res. 42,4, 599–609, DOI: 10.1016/j.asr.2007.07.048.CrossRefGoogle Scholar
  6. Blaunstein, N., and E. Plohotniuc (2008), Ionosphere and Applied Aspects of Radio Communication and Radar, CRC Press, Taylor & Francis Group, New York.CrossRefGoogle Scholar
  7. Brent, R.P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs.Google Scholar
  8. Coïsson, P., S.M. Radicella, R. Leitinger, and B. Nava (2006), Topside electron density in IRI and NeQuick: Features and limitations, Adv. Space. Res. 37,5, 937–942, DOI: 10.1016/j.asr.2005.09.015.CrossRefGoogle Scholar
  9. Daniell, R.E., L.D. Brown, D.N. Anderson, M.W. Fox, P.H. Doherty, D.T. Decker, J.J. Sojka, and R.W. Schunk (1995), Parameterized ionospheric model: A global ionospheric parameterization based on first principles models, Radio Sci. 30,5, 1499–1510, DOI: 10.1029/95RS01826.CrossRefGoogle Scholar
  10. Di Giovanni, G., and S.M. Radicella (1990), An analytical model of the electron density profile in the ionosphere, Adv. Space Res. 10,11, 27–30, DOI: 10.1016/0273-1177(90)90301-F.CrossRefGoogle Scholar
  11. Gaglione, S., A. Angrisano, G. Pugliano, U. Robustelli, R. Santamaria, and M. Vultaggio (2011), A stochastic sigma model for GLONASS satellite pseudorange, Appl. Geomat. 3,1, 49–57, DOI: 10.1007/s12518-011-0046-0.CrossRefGoogle Scholar
  12. Hargreaves, J.K. (1992), The Solar-Terrestrial Environment, Cambridge Atmospheric and Space Science Series, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  13. Hochegger, G., B. Nava, S. Radicella, and R. Leitinger (2000), A family of ionospheric models for different uses, Phys. Chem. Earth C 25,4, 307–310, DOI: 10.1016/S1464-1917(00)00022-2.Google Scholar
  14. Hoffmann-Wellenhof, B., H. Lichtenegger, and J. Collins (1992), Global Positioning System: Theory and Practice, Springer, New York.CrossRefGoogle Scholar
  15. IS-GPS-200 (2004), Navstar GPS space segment/navigation user interfaces, Revision D, ARINC Research Corporation, El Segundo, USA.Google Scholar
  16. Kaplan, E.D., J.L. Leva, D. Milbert, and M.S. Pavloff (2006), Fundamentals of satellite navigation. In: E.D. Kaplan and C.J. Hegarty (eds.), Understanding GPS. Principles and Applications, 2nd ed., Artech House Inc., Norwood, 21–65.Google Scholar
  17. Klobuchar, J.A. (1987), Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans. Aerospace Electron. Sys. AES-23,3, 325–331.CrossRefGoogle Scholar
  18. Leitinger, R., M.L. Zhang, and S.M. Radicella (2005), An improved bottomside for the ionospheric electron density model NeQuick, Ann. Geophys. 48,3, 525–534.Google Scholar
  19. Liu, J., R. Chen, Z. Wang, and H. Zhang (2011), Spherical cap harmonic model for mapping and predicting regional TEC, GPS Solut. 15,2, 109–119, DOI: 10.1007/s10291-010-0174-8.CrossRefGoogle Scholar
  20. Llewllyn, S.K., and R.B. Bent (1973), Documentation and description of the Bent ionospheric model, SAMSO Technical Report 73-252.Google Scholar
  21. Massaro, M. (2011), Confronto tra modelli ionosferici nel posizionamento GNSS in singola frequenza, M.Sc. Thesis, “Parthenope” University of Naples, Naples, Italy (in Italian).Google Scholar
  22. Memarzadeh, Y. (2009), Ionospheric modeling for precise GNSS applications, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
  23. Menvielle, M., and A. Berthelier (1991), The K-derived planetary indices: Description and availability, Rev. Geophys. 29,3, 415–432, DOI: 10.1029/91RG00994.CrossRefGoogle Scholar
  24. Nava, B., P. Coïsson, G.M. Amarante, F. Azpilicueta, and S.M. Radicella (2005), A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion, Ann. Geophys. 48,2, 313–320.Google Scholar
  25. Nava, B., P. Coïsson, and S.M. Radicella (2008), A new version of the NeQuick ionosphere electron density model, J. Atmos. Solar-Terr. Phys. 70,15, 1856–1862, DOI: 10.1016/j.jastp.2008.01.015.CrossRefGoogle Scholar
  26. Parkinson, B.W. (1996), GPS error analysis. In: B.W. Parkinson and J.J. Spilker (eds.), Global Positioning System: Theory and Applications, American Institute of Aeronautics and Astronautics Inc., Washington, 469–483.CrossRefGoogle Scholar
  27. Petit, G., and B. Luzum (2010), IERS conventions (2010), IERS Technical Note No. 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt, 137–150.Google Scholar
  28. Radicella, S.M. (2009), The NeQuick model genesis, uses and evolution, Ann. Geophys. 52,3/4, 417–422.Google Scholar
  29. Radicella, S.M., and R. Leitinger (2001), The evolution of the DGR approach to model electron density profiles, Adv. Space Res. 27,1, 35–40, DOI: 10.1016/S0273-1177(00)00138-1.CrossRefGoogle Scholar
  30. Radicella, S.M., and M.L. Zhang (1995), The improved DGR analytical model of electron density height profile and total electron content in the ionosphere, Ann. Geophys. 38,1, 35–41.Google Scholar
  31. Radicella, S.M., R. Leitinger, B. Nava, and P. Coïsson (2003), A flexible 3D ionospheric model for satellite navigation applications. In: Proc. Int. Symp. on GPS/GNSS, Tokyo, Japan, 2003, 305–310.Google Scholar
  32. Rawer, K. (1963), Propagation of decameter waves (h.f. band). In: B. Landmark (ed.), Meteorological and Astronomical Influences on Radio Wave Propagation, Pergamon Press Inc., Oxford.Google Scholar
  33. Rawer, K. (1982), Replacement of the present sub-peak plasma density profile by a unique expression, Adv. Space Res. 2,10, 183–190, DOI: 10.1016/0273-1177(82)90387-8.CrossRefGoogle Scholar
  34. Schaer, S., W. Gurtner, and J. Feltens (1998), IONEX: The IONosphere map eXchange, format version 1. In: Proc. IGS AC Workshop, 9–11 February 1998, Darmstadt, Germany.Google Scholar
  35. Schluter, S., Y. Beniquel, C. Bourga, B. Arbesser-Rastburg, N. Jakowski, F. Amarillo, D. Klahn, and T. Noack (2004), Ionosphere related contribution of the atmospheric processing and assessment facility to gstb-v1. In: Proc. European Navigation Conference, 16-19 May 2004, Rotterdam, The Netherlands.Google Scholar
  36. SIS-ICD (2006), Galileo Open Service Signal, Space Interface Control Document, SISICD-2006, European Space Agency.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Antonio Angrisano
    • 1
  • Salvatore Gaglione
    • 1
  • Ciro Gioia
    • 1
  • Marco Massaro
    • 1
  • Umberto Robustelli
    • 1
  1. 1.Department of Applied Sciences, PArthenope Navigation Group (PANG)“Parthenope” University of NaplesNapoliItaly

Personalised recommendations