Advertisement

Acta Geophysica

, Volume 61, Issue 4, pp 859–875 | Cite as

Radon and remediation measures near Băiţa-Ştei old uranium mine (Romania)

  • Constantin Cosma
  • Alexandra Cucoş
  • Botond Papp
  • Robert Begy
  • Tiberiu Dicu
  • Mircea Moldovan
  • Lucia Adina Truţă
  • Dan Constantin Niţă
  • Bety-Denissa Burghele
  • Liviu Suciu
  • Carlos Sainz
Research article

Abstract

Băiţa-Ştei mine is an open pit mine in NW Romania (West Carpathian Mountains). It was the largest surface uranium deposit in the world. Two means of uranium transport and dissemination were used over time. The first was the natural way, represented by transportation of geological sediments by Crişul-Băiţa River that crosses the Băiţa surface deposit. These sediments were used as building materials (stone, gravel, sand). The second way was related to the people living in this valley, who used also the uranium waste as building material. The preliminary indoor radon concentrations measured in the buildings ranged from 40 to 4000 Bq m−3 with a mean value of 241 Bq m−3. A focused radon survey facilitated the selection of 20 houses with the highest indoor radon that were therefore proposed for remediation. To find the radon sources of these houses, systematic investigations on radon were performed. The remedial measures for these 20 houses were tested on a chosen pilot house.

Key words

Baita uranium mine indoor radon radon potential prone area remedial measures pilot house 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnet, I., P. Pacherová, M. Neznal, and N. Neznal (2008), Radon in geological environment: Czech experience, CGS Special Papers 19, Czech Geological Survey, Prague.Google Scholar
  2. Cosma, C., K. Szacsvai, A. Dinu, D. Ciorba, T. Dicu, and L. Suciu (2009), Preliminary integrated indoor radon measurements in Transylvania (Romania), Isot. Environ. Health Stud. 45,3, 259–268, DOI: 10.1080/10256010902871895.CrossRefGoogle Scholar
  3. Cosma, C., B. Papp, M. Moldovan, V. Cosma, C. Cindea, L. Suciu, and A. Apostu (2010), Measurement of radon potential from soil using a special method of sampling, Acta Geophys. 58,5, 947–956, DOI: 10.2478/s11600-010-0039-0.CrossRefGoogle Scholar
  4. Cosma, C., A. Cucoş-Dinu, B. Papp, R. Begy, and C. Sainz (2013), Soil and building material as main sources of indoor radon in Băiţa-Ştei radon prone area (Romania), J. Environ. Radioactiv. 116, 174–179; DOI: 10.1016/j.jenvrad.2012.09.006.CrossRefGoogle Scholar
  5. Cucoş (Dinu), A., C. Cosma, T. Dicu, R. Begy, M. Moldovan, B. Papp, D. Niţă, B. Burghele, and C. Sainz (2012), Thorough investigations on indoor radon in Băiţa radon-prone area (Romania), Sci. Total Environ. 431, 78–83, DOI: 10.1016/j.scitotenv.2012.05.013.CrossRefGoogle Scholar
  6. Dumitrescu, N. (2010), Low grade uranium ore. In: Vienna Meeting “Uranium Mining and Milling in Romania”, 29–31 March 2010 (oral presentation).Google Scholar
  7. Janik, M., S. Tokanami, T. Kovács, N. Kávási, C. Kranrod, A. Sorimachi, H. Takahashi, N. Miyahara, and T. Ishikawa (2009), International intercomparisons of integrating radon detectors in the NIRS radon chamber, Appl. Radiat. Istopes 67,9, 1691–1696, DOI: 10.1016/j.apradiso.2009.03.006.CrossRefGoogle Scholar
  8. Matolin, M. (2010), Protocol on the evaluation of comparison measurement of radon (222Rn) activity concentration in soil gas at reference sites Cetyne, Bohostice and Buk (Czech Republic), Report.Google Scholar
  9. Neznal, M., M. Neznal, M. Matolín, I. Barnet, and J. Miksova (2004), The new method for assessing the radon risk of building sites, CGS Special Papers 16, Czech Geological Survey, Prague.Google Scholar
  10. Papp, B. (2011), Radon and radon flux from soil. Applications in environmental science, geology and geophysics, Ph.D. Thesis, Babeş-Bolyai University, Cluj-Napoca (in Roumanian).Google Scholar
  11. Plch, J., and M. Eng (1997), Manual for operating LUK 3A, SMM Prague.Google Scholar
  12. Sainz, C., A. Dinu, T. Dicu, K. Szacsvai, C. Cosma, and L.S. Quindós (2009), Comparative risk assessment of residential radon exposures in two radon-prone areas, Ştei (Romania) and Torrelodones (Spain), Sci. Total. Environ. 407, 15, 4452–4460, DOI: 10.1016/j.scitotenv. 2009.04.033.CrossRefGoogle Scholar
  13. Sandor, G.N., A. Poffijn, and C. Cosma (1999), Indoor radon survey in a uranium area from Romania. In: Proc. “Radon in the Living Environment”, 19–23 April 1999, Athens, Greece.Google Scholar
  14. Trută-Popa, L.A., A. Dinu, T. Dicu, K. Szacsvai, C. Cosma, and W. Hofmann (2010), Preliminary lung cancer risk assessment of exposure to radon progeny for Transylvania, Romania, Health Phys. 99,3, 301–307, DOI: 10.1097/HP.0b013e3181c03cde.CrossRefGoogle Scholar
  15. Trută-Popa, L.A., W. Hofmann, and C. Cosma (2011), Prediction of lung cancer risk for radon exposures based on cellular alpha particle hits, Radiat. Prot. Dosim. 145,2–3, 218–223, DOI: 10.1093/rpd/ncr082.CrossRefGoogle Scholar
  16. Trută-Popa, L.A., C. Cosma, and W. Hofmann (2012), Lung cancer attributed to radon exposure, for the general population: Estimation and prevention. In: Zhiyong Zhang (ed.), Risk Assessment and Management, Editura Academy Publish., Wyoming, USA, 422–445.Google Scholar
  17. Wikipedia (2012), Băiţa, Bihor (http://ro.wikipedia.org/wiki).Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Constantin Cosma
    • 1
  • Alexandra Cucoş
    • 1
  • Botond Papp
    • 1
  • Robert Begy
    • 1
  • Tiberiu Dicu
    • 1
  • Mircea Moldovan
    • 1
  • Lucia Adina Truţă
    • 1
  • Dan Constantin Niţă
    • 1
  • Bety-Denissa Burghele
    • 1
  • Liviu Suciu
    • 2
  • Carlos Sainz
    • 3
  1. 1.Faculty of Environmental Science and EngineeringBabeş-Bolyai UniversityCluj-NapocaRomania
  2. 2.Research and Design Institute for Electrical Engineering (ICPE) Bistriţa S.A.BistriţaRomania
  3. 3.Department of Medical Physics, Faculty of MedicineUniversity CantabriaSantanderSpain

Personalised recommendations