Acta Geophysica

, Volume 61, Issue 4, pp 822–830 | Cite as

The effect of CO2 on the measurement of 220Rn and 222Rn with instruments utilising electrostatic precipitation

Research article

Abstract

In some volcanic systems, thoron and radon activity and CO2 flux, in soil and fumaroles, show a relationship between (220Rn/222Rn) and CO2 efflux. It is theorized that deep, magmatic sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux.

In this paper we evaluate whether the observed inverse relationship is a true geochemical signal, or potentially an analytical artifact of high CO2 concentrations. We report results from a laboratory experiment using the RAD7 radon detector, known 222Rn (radon) and 220Rn (thoron), and a controllable percentage of CO2 in the carrier gas. Our results show that for every percentage of CO2, the 220Rn reading should be multiplied by 1.019, the 222Rn radon should be multiplied by 1.003 and the 220Rn/222Rn ratio should be multiplied by 1.016 to correct for the presence of the CO2.

Key words

radon thoron fumoroles carbon dioxide volcano 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cigolini, C., P. Poggi, M. Ripepe, M. Laiolo, C. Ciamberlini, D. Delle Donne, G. Ulivieri, D. Coppola, G. Lacanna, E. Marchetti, D. Piscopo, and R. Genco (2009), Radon surveys and real-time monitoring at Stromboli volcano: Influence of soil temperature, atmospheric pressure and tidal forces on 222Rn degassing, J. Volcanol. Geoth. Res. 184,3–4, 381–388, DOI: 10.1016/j.jvolgeores.2009.04.019.CrossRefGoogle Scholar
  2. D’Amore, F., and J.C. Sabroux (1976), Signification de la présence de radon 222dans le fluides géothermiques, B. Volcanol. 40,2, 106–115, DOI: 10.1007/BF02599855 (in French).CrossRefGoogle Scholar
  3. Giammanco, S., K.W.W. Sims, and M. Neri (2007), Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): Implications for gas transport and shallow ground fracture, Geochem. Geophys. Geosys. 8,10, Q10001, DOI: 10.1029/2007GC001644.CrossRefGoogle Scholar
  4. Giammanco, S., G. Immè, G. Mangano, D. Morelli, and M. Neri (2009), Comparison between different methodologies for detecting radon in soil along an active fault: The case of the Pernicana fault system, Mt. Etna (Italy), Appl. Radiat. Isotopes 67,1, 178–185, DOI: 10.1016/j.apradiso.2008.09.007.CrossRefGoogle Scholar
  5. Huxol, S., M.S. Brenwald, E. Hoehn, and R. Kipfer (2012), On the fate of 220Rn in soil material in dependence of water content: Implications from field and laboratory experiments, Chem. Geol. 298–299, 116–122, DOI: 10.1016/j.chemgeo.2012.01.002.CrossRefGoogle Scholar
  6. Laiolo, M., C. Cigolini, D. Coppola, and D. Piscopo (2012), Developments in realtime radon monitoring at Stromboli volcano, J. Environ. Radioactiv. 105, 21–29, DOI: 10.1016/j.jenvrad.2011.10.006.CrossRefGoogle Scholar
  7. Liotta, M., A. Paonita, A. Caracausi, M. Martelli, A. Rizzo, and R. Favara (2010), Hydrothermal processes governing the geochemistry of the crater fumaroles at Mount Etna volcano (Italy), Chem. Geol. 278,1–2, 92–104, DOI: 10.1016/j.chemgeo.2010.09.004.CrossRefGoogle Scholar
  8. Martelli, M., A. Caracausi, A. Paonita, and A. Rizzo (2008), Geochemical variations of air-free crater fumaroles at Mt. Etna: New inferences for forecasting shallow volcanic activity, Geophys. Res. Lett. 35,21, L21302, DOI: 10.1029/2008GL035118.CrossRefGoogle Scholar
  9. Martinelli, G. (1998), Gas geochemistry and 222Rn migration process, Radiat. Prot. Dosim. 78,1, 77–82, DOI: 10.1093/oxfordjournals.rpd.a032338.CrossRefGoogle Scholar
  10. Neri, M., S. Giammanco, E. Ferrera, G. Patanè, and V. Zanon (2011), Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: the example of Mt. Etna (Italy), J. Environ. Radioactiv. 102,9, 863–870, DOI: 10.1016/j.jenvrad.2011.05.002.CrossRefGoogle Scholar
  11. Pérez, N.M., P.A. Hernández, E. Padrón, G. Melián, R. Marrero, G. Padilla, J. Barrancos, and D. Nolasco (2007), Precursory subsurface 222Rn and 220Rn degassing signatures of the 2004 seismic crisis at Tenerife, Canary Islands, Pure Appl. Geophys. 164,12, 2431–2448, DOI: 10.1007/s00024-007-0280-x.CrossRefGoogle Scholar
  12. Tuccimei, P., and M. Soligo (2008), Correcting for CO2 interference in soil radon flux measurements, Radiat. Meas. 43,1, 102–105, DOI: 10.1016/j.radmeas.2007.05.056.CrossRefGoogle Scholar
  13. Yang, T.F., H.Y. Wen, C.C. Fu, H.F. Lee, and T.F. Lan (2011), Soil radon flux and concentrations in hydrothermal area of the Tatun Volcano Group, Northern Taiwan, Geochem. J. 45,6, 483–490.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Durridge Company Inc.BillericaUSA
  2. 2.Wyoming High Precision Isotope Laboratory, Dept. of Geology and GeophysicsUniversity of WyomingLaramieUSA

Personalised recommendations