Acta Geophysica

, Volume 61, Issue 3, pp 752–772 | Cite as

On precise orbit determination of HY-2 with space geodetic techniques

  • Jinyun GuoEmail author
  • Qiaoli Kong
  • Jian Qin
  • Yu Sun


As the first radar altimetric satellite of China, HY-2 requires the precise orbit determination with a higher accuracy than that of other satellites. In order to achieve the designed radial orbit with the accuracy better than 10 cm for HY-2, the methods of precise orbit determination for HY-2 with the centimeter-level accuracy based on space geodetic techniques (DORIS, SLR, and satellite-borne GPS) are studied in this paper. Perturbations on HY-2 orbit are analyzed, in particular those due to the non-spherical gravitation of the earth, ocean tide, solid earth tide, solar and earth radiation, and atmospheric drag. Space geodetic data of HY-2 are simulated with the designed HY-2 orbit parameters based on the orbit dynamics theory to optimize the approaches and strategies of precise orbit determination of HY-2 with the dynamic and reduced-dynamic methods, respectively. Different methods based on different techniques are analyzed and compared. The experiment results show that the nonspherical perturbation modeled by GGM02C causes a maximum perturbation, and errors caused by the imperfect modeling of atmospheric drag have an increasing trend on T direction, but errors are relatively stable on the other two directions; besides, the methods with three space geodetic techniques achieve the radial orbit with the precision better than 10 cm.

Key words

HY-2 precise orbit determination DORIS SLR satellite-borne GPS dynamic method reduced-dynamic method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balmino, G., and J.B. Barriot (1990), Numerical integration techniques revisited, Manuscr. Geodaet. 15, 1–10.Google Scholar
  2. Barlier, F., C. Berger, J.L. Falin, G. Kockarts, and G. Thuillier (1978), A thermospheric model based on satellite drag data, Ann. Geophys. 34, 9–24.Google Scholar
  3. Chen, C.T. (1998), A simulation study of precision orbit determination using GEODYNII, Master’s Thesis, National Chiao Tung University, Hsinchu, Taiwan.Google Scholar
  4. Feng, C.G., Y.L. Zhu, and P.F. Zhang (2003), Determination of LAGEOS satellite’s precise orbits and residual analysis, Acta Astronom. Sin. 44, 55–63.Google Scholar
  5. Guo, J.Y., and Y.B. Han (2009), Seasonal and inter-annual variations of length of day and polar motion observed by SLR in 1993–2006, Chinese Sci. Bull. 54,1, 46–52, DOI: 10.1007/s11434-008-0504-1.CrossRefGoogle Scholar
  6. Guo, J., C. Hwang, Z. Tseng, and X. Chang (2007), Simulation of precise orbit determination of COSMIC from onboard GPS zero-difference phase data with kinematic method. In: Proc. 2nd Int. Conf. on Space Information Technology, 10 November 2007, Wuhan, China, SPIE 67951W, DOI: 10.1117/ 12.773977.Google Scholar
  7. Guo, J.Y., Y.B. Han, and X.T. Chang (2009), A new method of ionospheric-free hybrid differential positioning based on a double-antenna CAPS receiver, Sci. China Ser. G 52,3, 368–375, DOI: 10.1007/s11433-009-0054-9.CrossRefGoogle Scholar
  8. Guo, J.Y., J. Qin, Q.L. Kong, and G.W. Li (2012), On simulation of precise orbit determination of HY-2 with centimeter precision based on satellite-borne GPS technique, Appl. Geophys. 9,1, 95–107, DOI: 10.1007/s11770-012-0319-3.CrossRefGoogle Scholar
  9. He, S.Q., D.J. Peng, and B. Wu (2011), Analysis of orbit determination accuracy for LEO satellite using global and regional SLR measurements, Spacecraft Eng. 25,3, 25–31.Google Scholar
  10. Jacchia, L.G. (1971), Revised static models of the thermosphere an exosphere with empirical temperature profiles, Smithsonian Astrophysical Observatory, Spec. Rep. No. 332.Google Scholar
  11. Knocke, P.C., J.C. Ries, and B.D. Tapley (1987), Earth radiation pressure effects on satellites, Center for Space Research, The University of Texas, Austin, USA, Techn. Memor., CSR-TM-87-01.Google Scholar
  12. Kuijper, D.C., B.A.C. Ambrosius, and K.F. Wakker (1995), SPOT-2 and TOPEX/Poseidon precise orbit determination from DORIS doppler tracking, Adv. Space Res. 16,12, 45–50, DOI: 10.1016/0273-1177(95)98778-M.CrossRefGoogle Scholar
  13. Leick, A. (2004), GPS Satellite Surveying, 3rd ed., John Wiley & Sons, Hoboken.Google Scholar
  14. Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, and R.H. Rapp (1997), The development of the NASA GSFC and NIMA joint geopotential model. In: J. Segawa, H. Fujimoto, and S. Okubo (eds.), Proc. Int. Symp. on Gravity, Geoid, and Marine Geodesy, Tokyo, Japan.Google Scholar
  15. Li, P.J., J.F. Cao, X.G. Hu, Y. Huang, H. Wang, and S.B. Shi (2010), High accuracy orbit determination with DORIS system, J. Spacecraft Technol. 29, 58–64, DOI: CNKI:SUN:FXCK.0.2010-03-019.Google Scholar
  16. Melbourne, W.G., E.S. Davis, T.P. Yunck, and B.D. Tapley (1994), The GPS flight experiment on TOPEX/POSEIDON, Geophys. Res. Lett. 21,19, 2171–2174, DOI: 10.1029/94GL02192.CrossRefGoogle Scholar
  17. Montenbruck, O., and E. Gill (2000), Satellite Orbits. Models, Methods, Applications, Springer, Berlin, 369 pp.CrossRefGoogle Scholar
  18. Nelson, M. (2010), Derivation of a solar radiation pressure model of the latest GLONASS spacecraft, Master’s Thesis, University College London, UK.Google Scholar
  19. Nikita, P.Z., S.C. Douglas, D.R. David, and G.L. Frank (2000), Improving the TOPEX/POSEIDON orbit using DORIS tracking, DORIS Days Meeting, Toulouse, France.Google Scholar
  20. Pavlis, E.C. (1999), Fortnightly resolution geocenter series: A combined analysis of Lageos 1 and 2 SLR data, IERS Techn. Note 25, Observatoire de Paris, Paris, France, 75–84.Google Scholar
  21. Peng, D.J., and B. Wu (2008), Precise orbit determination for Jason-1 satellite using on-board GPS data with cm-level accuracy, Chinese Sci. Bull. 54,2, 196–202, DOI: 10.1007/s11434-008-0513-0.CrossRefGoogle Scholar
  22. Qin, X.P. (2003), Research on precise orbit determination theory and method of low earth orbiter based on GPS technique, Master’s Thesis, PLA Information Engineering University, Zhengzhou, China.Google Scholar
  23. Rothacher, M., G. Beutler, D. Behrend, A. Donnellan, J. Hinderer, C. Ma, C. Noll, J. Oberst, M. Pearlman, H.-P. Plag, B. Richter, T. Schöne, G. Travernier, and P.L. Woodworth (2009), The future Global Geodetic Observing System. In: H.-P. Plag and M. Pearlman (eds.), Global Geodetic Observing System. Meeting the Requirements of a Global Society on a Changing Planet in 2020, Springer, Berlin-Heidelberg, 237–272.Google Scholar
  24. Seeber, G. (1993), Satellite Geodesy. Foundations, Methods, and Applications, de Gruyter, Berlin, 531 pp.Google Scholar
  25. Švehla, D., and M. Rothacher (2003), Kinematic and reduced-dynamic precise orbit determination of low earth orbiters, Adv. Geosci. 1, 47–56, DOI: 10.5194/adgeo-1-47-2003.CrossRefGoogle Scholar
  26. Tapley, B.D., B.E. Schutz, and G.H. Born (2004), Statistical Orbit Determination, Elsevier Academic Press, Burlington, 547 pp.Google Scholar
  27. Wang, H.J. (2010), High-precision DORIS system for orbit-determining, Electronic Electro-optical Syst. 3, 27–31.Google Scholar
  28. Wu, B., M.S. Lin, and Z.P. Zhang (2011), Global SLR tracking support for HY-2 satellite precise orbit determination. In: Proc. 17th Int. Workshop on Laser Ranging, 16–20 May 2011, Bad Kötzting, Germany.Google Scholar
  29. Xing, N., P.J. Li, X.Y. Wang, Y. Huang, and X.G. Hu (2011), Accuracy analysis of real-time autonomous orbit determination with Doppler measurement from earth observation satellite, J. Spacecraft TT&C Technol. 30,1, 67–73, DOI: CNKI:SUN:FXCK.0.2011-01-021.Google Scholar
  30. Yang, Y.X. (2006), Adaptive Dynamic Navigation, Surveying and Mapping Press, Beijing.Google Scholar
  31. Zhao, Q.L., J.N. Liu, M.R. Ge, and C. Shi (2006), Applications of square root information filtering and smoothing on orbit determination of LEO satellites with onboard GPS data, Geomatics Inf. Sci. Wuhan Univer. 31,1, 12–15.Google Scholar
  32. Zhou, S.W., M. Zhan, and M.H. Lu (2009), A precise orbit determination scheme for satellites, J. Telemetry Track. Command 30,4, 21–26.Google Scholar
  33. Zhu, Y.L., C.G. Feng, and Y.H. Zhou (2003), Earth orientation parameters during 1990–2001 solved with Lageos 1 SLR data, Ann. Shanghai Observ. Acad. Sinica 24, 28–33 (in Chinese).Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.College of Geodesy and GeomaticsShandong University of Science and TechnologyQingdaoChina
  2. 2.Key Laboratory of Surveying and Mapping Technology on Island and Reef, National Administration of SurveyingMapping and GeoinformationQingdaoChina
  3. 3.State Key Laboratory of Geodesy and Earth’s DynamicsWuhanChina

Personalised recommendations