Advertisement

Acta Geophysica

, Volume 61, Issue 2, pp 494–509 | Cite as

Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals

  • Peter I. Y. VelinovEmail author
  • Simeon N. Asenovski
  • Lachezar N. Mateev
Article

Abstract

Numerical calculations of galactic cosmic ray (GCR) ionization rate profiles are presented for the middle atmosphere and lower ionosphere altitudes (35–90 km) for the full GCR composition (protons, alpha particles, and groups of heavier nuclei: light L, medium M, heavy H, very heavy VH). This investigation is based on a model developed by Velinov et al. (1974) and Velinov and Mateev (2008), which is further improved in the present paper. Analytical expressions for energy interval contributions are provided. An approximation of the ionization function on three energy intervals is used and for the first time the charge decrease interval for electron capturing (Dorman 2004) is investigated quantitatively. Development in this field of research is important for better understanding the impact of space weather on the atmosphere. GCRs influence the ionization and electric parameters in the atmosphere and also the chemical processes (ozone creation and depletion in the stratosphere) in it. The model results show good agreement with experimental data (Brasseur and Solomon 1986, Rosenberg and Lanzerotti 1979, Van Allen 1952).

Key words

galactic cosmic ray ionization middle atmosphere lower ionosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostinelli, S., J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arcel, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche (2003). GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. Phys. Res. A 506,3, 250–303, DOI: 10.1016/S0168-9002(03)01368-8.CrossRefGoogle Scholar
  2. Alexandrov, L., and A. Mishev (2008), Application of afxy-code for parameterization of ionization yield function Y in the atmosphere for primary cosmic ray protons, arXiv:0712.3174 [physics.space-ph].Google Scholar
  3. Apanasenko, A.V., V.A. Beresovskaya, M. Fuji, V.I. Galkin, M. Hareyama, M. Ichimura, S. Ito, E. Kamioka, T. Kitami, T. Kobayashi, V.V. Kopenkin, S. Kuramata, Y. Kuriyama, V.I. Lapshin, A.K. Managadze, H. Matsutani, H. Mikami, N.P. Misnikova, R.A. Mukhamedshin, M. Namiki, H. Nanjo, S.N. Nazarov, S.I. Nikolsky, T. Oe, S. Ohta, V.I. Osedlo, D.S. Oshuev, P.A. Publichenko, I.V. Rakovolskaya, T.M. Roganova, M. Saito, G.P. Sazhina, H. Semba, Yu.N. Shabanova, T. Shibata, H. Sugimoto, L.G. Sveshnikova, K. Takahashi, T. Tsutiya, V.M. Taran, N. Yajima, T. Yamagami, K. Yamamoto, I.V. Yashin, E.A. Zamchalova, G.T. Zetsepin, and I.S. Zayarnaya (2001), All particle spectrum observed by RUNJOB. In: Proc. 27th Int. Cosmic Ray Conference, 7–15 August 2001, Hamburg, Germany, 1622–1625.Google Scholar
  4. Bethe, H. (1930), Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, Ann. Phys. 397,3, 325–400, DOI: 10.1002/andp.19303970303 (in German).CrossRefGoogle Scholar
  5. Bloch, F. (1933), Bremsvermögen von Atomen mit mehreren Elektronen, Z. Phys., 81,5–6, 363–376, DOI: 10.1007/BF01344553 (in German).Google Scholar
  6. Bohr, N. (1913), On the theory of the decrease of velocity of moving electrified particles on passing through matter, Philos. Mag. Ser. 6 25,145, 10–31, DOI: 10.1080/14786440108634305.CrossRefGoogle Scholar
  7. Brasseur, G.P., and S. Solomon (1986), Aeronomy of the Middle Atmosphere, Chemistry and Physics of the Stratosphere and Mesosphere, 2 ed., Atmospheric and Oceanographic Sciences Library, Reidel Publ. Comp., Dordrecht, 452 pp.CrossRefGoogle Scholar
  8. De Nolfo, G.A., N.E. Yanasak, W.R. Binns, A.C. Cummings, A.J. Davis, J.S. George, P.L. Hink, M.H. Israel, R.A. Leske, R.A. Mewaldt, E.C. Stone, T.T. von Rosenvinge, and M.E. Wiedenbeck (2003), New measurements of the Li, Be, and B isotopes as a test of cosmic ray transport models. In: Proc. 28th Int. Cosmic Ray Conference, 31 July–7 August 2003, Tsukuba, Japan, 1777–1780.Google Scholar
  9. Desorgher, L., E.O. Flückiger, M. Gurtner, M.R. Moser, and R. Bütikofer (2005), Atmocosmics: A GEANT 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere, Int. J. Modern Phys. A 20,29, 6802–6804, DOI: 10.1142/S0217751X05030132.CrossRefGoogle Scholar
  10. Dorman, L.I. (2004), Cosmic Rays in the Earth’s Atmosphere and Underground, Astrophysics and Space Science Library, Kluwer Academic Publ., Dordrecht.Google Scholar
  11. Dorman, L.I., and I.D. Kozin (1983), Cosmic Radiation in the Upper Atmosphere, Fizmatgiz, Moscow.Google Scholar
  12. Gleeson, L.J., and W.I. Axford (1968), Solar modulation of galactic cosmic rays, Astrophys. J. 154, 1011, DOI: 10.1086/149822.CrossRefGoogle Scholar
  13. Heaps, M.G. (1978), Parameterization of the cosmic ray ion-pair production rate above 18 km, Planet. Space Sci. 26,6, 513–517, DOI: 10.1016/0032-0633(78)90041-7.CrossRefGoogle Scholar
  14. Heck, D., J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thouw (1998), CORSIKA: A Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe, Report FZKA 6019.Google Scholar
  15. Maplesoft (2010), Maple, Version 14, Mathematics with Maple, Maplesoft.Google Scholar
  16. Mishev, A.L. (2009), Recent CORSIKA code simulations for space climate and astrophysics toward to Sun-Earth influences studies. In: Proc. Int. Conference, Fundamental Space Research, 120–123.Google Scholar
  17. Mishev, A.L., and P.I.Y. Velinov (2010), The effect of model assumptions on computations of cosmic ray induced ionization in the atmosphere, J. Atmos. Solar Terr. Phys. 72,5–6, 476–481, DOI: 10.1016/j.jastp.2010.01.004.CrossRefGoogle Scholar
  18. Rosenberg, T.J., and L.J. Lanzerotti (1979), Direct energy inputs to the middle atmosphere. In: NASA, Goddard Space Flight Center, Middle Atmosphere Electrodynamics, SEE N79-25608 16–46, 43–70.Google Scholar
  19. Ruder, H., P.I.Y. Velinov, and L.N. Mateev (2006), Interval coupling of cosmic ray protons in ionization model for planetary ionospheres and atmospheres, C. R. Acad. Bulg. Sci. 59,7, 717–722.Google Scholar
  20. Starodubcev, S.V., and A.M. Romanov (1962), Penetration of charged particles through substance, Publ. House Uzb. Acad. Sci., Tashkent (in Russian).Google Scholar
  21. Sternheimer, R.M. (1961), Fundamental principles and methods of particle detection, In: L.C.L. Yuan, and C.-S. Wu (eds.), Methods in Experimental Physics, Vol. 5, Part A. Nuclear Physics, Acad. Press, New York — London.Google Scholar
  22. Tassev, Y.K. (2008), Relationships between low energy proton flux and ozone, temperature and pressure during and after the solar proton event from 20 January 2005, C. R. Acad. Bulg. Sci. 61,2, 243–252.Google Scholar
  23. Toptygin, I.N. (1985), Cosmic Rays in Interplanetary Magnetic Fields, D. Reidel Publ., Dordrecht, 375 pp.CrossRefGoogle Scholar
  24. Usoskin, I.G., K. Alanko-Huotari, G.A. Kovaltsov, and K. Mursula (2005), Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004, J. Geophys. Res. 110, A12108, DOI: 10.1029/2005JA011250.CrossRefGoogle Scholar
  25. Usoskin, I.G., L. Desorgher, P. Velinov, M. Storini, E.O. Flückiger, R. Bütikofer, and G.A. Kovalstov (2009), Ionization of the Earth’s atmosphere by solar and galactic cosmic rays, Acta Geophys. 57,1, 88–101, DOI: 10.2478/s11600-008-0019-9.CrossRefGoogle Scholar
  26. Usoskin, I.G., G.A. Kovaltsov, and I.A. Mironova (2010), Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere, J. Geophys. Res. 115, D10302, DOI: 10.1029/2009JD013142.CrossRefGoogle Scholar
  27. Van Allen, J.A. (1952), The nature and intensity of the cosmic radiation. In: C.S. White and OO Benson, Jr. (eds.), Physics and Medicine of the Upper Atmosphere, University of New Mexico Press, Albuquerque.Google Scholar
  28. Velinov, P.I.Y., G. Nestorov, and L. Dorman (1974), Cosmic Ray Influence on the Ionosphere and on the Radiowave Propagation, BAS Publ. House, Sofia.Google Scholar
  29. Velinov, P.I.Y. (1991), Effect of anomalous CR on ionization in high latitude ionosphere, C. R. Acad. Bulg. Sci. 44,2, 33.Google Scholar
  30. Velinov, P.I.Y., and L. Mateev (2008), Analytical approach to cosmic ray ionization by nuclei with charge Z in the middle atmosphere — Distribution of galactic CR effects, Adv. Space Res. 42,9, 1586–1592, DOI: 10.1016/j.asr.2007.12.008.CrossRefGoogle Scholar
  31. Velinov, P.I.Y., A. Mishev, and L. Mateev (2009), Model for induced ionization by galactic cosmic rays in the Earth atmosphere and ionosphere, Adv. Space Res. 44,9, 1002–1007, DOI: 10.1016/j.asr.2009.06.006.CrossRefGoogle Scholar
  32. Wolfram, S. (2008), Mathematica, Version 7.0, Wolfram Research Inc., Champaign.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Peter I. Y. Velinov
    • 1
    Email author
  • Simeon N. Asenovski
    • 1
  • Lachezar N. Mateev
    • 1
  1. 1.Space Research and Technology InstituteBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations