Advertisement

Acta Geophysica

, Volume 61, Issue 2, pp 245–263 | Cite as

Wave moment geodynamics

  • Alexandr V. VikulinEmail author
  • Tatiana Yu. Tveritinova
  • Alexandr G. Ivanchin
Article

Abstract

The work presents a review of natural-science representations on the rotary motion of matter and its piecewise structure. Development of dense GPS-networks allowed to experimentally confirm the concept of block structures of the geophysical environment and to prove rotary character of block movement. An analysis of both the migration of earthquake sources and the movement of sections of tectonic plates’ borders has allowed to reveal general properties of such movements and to prove their wave nature. It is shown that within the limits of rotational model, blocks and plates are interconnected among themselves by the elastic long-range fields forming a uniform planetary geodynamic field. It is offered to use the geodynamic solutions of rotational model in the one class of phenomena as a basis at the construction of a new geological paradigm — wave moment geodynamics.

Key words

block plate rotational wave model moment geodynamics. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonov, V.A., and B.P. Kondratèv (1995), On the conditional extremum for the gravitational energy inherent to the oblate spheroid, Astron. Astrophys. Trans.: J. Eurasian Astron. Soc. 7,2–3, 173–176, DOI: 10.1080/10556799508205413.CrossRefGoogle Scholar
  2. Bykov, V.G. (2008), Stick-slip and strain waves in the physics of earthquake rupture: experiments and models, Acta Geophys. 56,2, 270–285, DOI: 10.2478/s11600-008-0002-5.CrossRefGoogle Scholar
  3. Chandrasekhar, S., and P.H. Roberts (1963), The ellipticity of a slow rotating configuration, Astrophys. J. 138, 801–808, DOI: 10.1086/147686.CrossRefGoogle Scholar
  4. De Rubeis, V., Z. Czechowski, and R. Teisseyre (eds.) (2010), Synchronization and Triggering: from Fracture to Earthquake Processes, GeoPlanet: Earth and Planetary Sciences, Springer-Verlag, Berlin, 390 pp.Google Scholar
  5. Elsasser, W.M. (1969), Convection and stress propagation in the upper mantle. In: S.K. Runcorn (ed.), Applications of Modern Physics to the Earth and Planetary Interiors, Wiley-Interscience, New York, 223–246.Google Scholar
  6. Flesch, L.M., A.J. Haines, and W.E. Holt (2001), Dynamics of the India-Eurasia collision zone, J. Geophys. Res. 106,B8, 16435–16460, DOI: 10.1029/2001JB000208.CrossRefGoogle Scholar
  7. Fujiwhara, S., T. Tsujimura, and S. Kusamitsu (1933), On the Earth-Vortex, Echelon Faults and Allied Phenomena, Akademische Verlagsgesellschaft, Leipzig.Google Scholar
  8. Gershenzon, N.I., V.G. Bykov, and G. Bambakidis (2009), Strain waves, earthquakes, slow earthquakes, and afterslip in the framework of the Frenkel-Kontorova model, Phys. Rev. E 79, 056601, DOI: 10.1103/PhysRevE.79. 056601.CrossRefGoogle Scholar
  9. Heirtzler, J.R., G.O. Dickson, E.M. Herron, W.C. Pitman, and X. Le Pichon (1968), Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents, J. Geophys. Res. 73,6, 2119–2136, DOI: 10.1029/JB073i006p02119.CrossRefGoogle Scholar
  10. Isacks, B., J. Oliver, and L.R. Sykes (1968), Seismology and the new global tectonics, J. Geophys. Res. 73, 133–179, DOI: 10.1029/JB073i018p05855.CrossRefGoogle Scholar
  11. Kuzikov, S.I., and Sh.A. Mukhamediev (2010), Structure of the present-day velocity field of the crust in the area of the Central-Asian GPS network, Izv. Phys. Solid Earth 46,7, 584–601, DOI: 10.1134/S1069351310070037.CrossRefGoogle Scholar
  12. Landau, L.D., and E.M. Lifshitz (1976), Mechanics, Course of Theoretical Physics, Vol. 1, Buttroworth-Heinemann, Amsterdam.Google Scholar
  13. Le Pichon, X. (1968), Sea-floor spreading and continental drift, J. Geophys. Res. 73,12, 3661–3697, DOI: 10.1029/JB073i012p03661.CrossRefGoogle Scholar
  14. Lee, J.S. (1928), Some characteristic structural types in Eastern Asia and their bearing upon the problem of continental movements, Geol. Mag. 66,9, 422–430, DOI: 10.1017/S001675680010531X.Google Scholar
  15. Lee, W.H.K., M. Çelebi, M.I. Todorovska, and H. Igel (2009a), Introduction to the Special Issue on rotational seismology and engineering applications, Bull. Seismol. Soc. Am. 99,2B, 945–957, DOI: 10.1785/0120080344.CrossRefGoogle Scholar
  16. Lee, W.H.K., H. Igel, and D. Trifunac (2009b), Recent advances in rotational seismology, Seismol. Res. Lett. 80,3, 479–490, DOI: 10.1785/gssrl.80.3.479.CrossRefGoogle Scholar
  17. Magnitskiy, V.A. (1967), The Internal Structure and Physics of the Earth, NASA, Washington D.C.Google Scholar
  18. Morgan, W.J. (1968), Rises, trenches, great faults and crustal blocks, J. Geophys. Res. 73,6, 1959–1982, DOI: 10.1029/JB073i006p01959.CrossRefGoogle Scholar
  19. Nikolaevskiy, V.N. (1996), Geomechanics and Fluidodynamics, Kluwer Academic Publ., Dordrecht.Google Scholar
  20. Replumaz, A., and P. Tapponnier (2003), Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks, J. Geophys. Res. 108, 2285, DOI: 10.1029/2001JB000661.CrossRefGoogle Scholar
  21. Riemann, B. (1861), Beitrag zu den Untersuchungen über die Bewegung eines flüssigen gleichartingen Ellipsoides, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 9.Google Scholar
  22. Takeuchi, A. (1986), On the episodic vicissitude of tectonic stress field of the Cenozonic northeast Honshu arc, Japan. In: N. Nasu et al. (eds.), Formation of Active Ocean Margins, Kluwer Academic Publ., Tokyo, 443–465.Google Scholar
  23. Teisseyre, R. (2010), Fluid theory with asymmetric molecular stresses: difference between vorticity and spin equations, Acta Geophys. 58,6, 1056–1071, DOI: 10.2478/s11600-010-0029-2.CrossRefGoogle Scholar
  24. Teisseyre, R., and M. Górski (2011), Earthquake fragmentation and slip processes: Spin and shear-twist wave mosaic, Acta Geophys. 59,3, 453–469, DOI: 10.2478/s11600-011-0001-9.CrossRefGoogle Scholar
  25. Thatcher, W. (1995), Microplate versus continuum descriptions of active tectonic deformation, J. Geophys. Res. 100,B3, 3885–3894, DOI: 10.1029/ 94JB03064.CrossRefGoogle Scholar
  26. Vikulin, A.V. (2006), Earth rotation, Elasticity and Geodynamics: Earthquake Wave Rotary Model. In: R. Teisseyre, M. Takeo, and E. Majewski (eds.), Earthquake Source Asymmetry, Structural Media and Rotation Effects, Springer, Berlin, 273–289, DOI: 10.1007/3-540-31337-0_20.CrossRefGoogle Scholar
  27. Vikulin, A.V. (2008), Energy and moment of the Earth’s rotational field, Russ. Geol. Geophys. 49, 422–429.CrossRefGoogle Scholar
  28. Vikulin, A.V. (2009), Physics of the Earth and Geodynamics, KamGU, Petropavlovsk-Kamchatsky, 463, www.kscnet.ru (in Russian).Google Scholar
  29. Vikulin, A.V. (2011), Seismicity, Volcanism, Geodynamics: Selected Works, KamGU, Petropavlovsk-Kamchatskii, 407, www.kscnet.ru (in Russian).Google Scholar
  30. Vikulin, A.V., and G.A. Ivanchin (2000), Rotational model of seismic process, Russ. J. Pac. Geol. 15,6, 1225–1240.Google Scholar
  31. Vikulin, A.V., and A.N. Krolevets (2002), Seismotectonic processes and the Chandler oscillation, Acta Geophys. Pol. 50,3, 395–411.Google Scholar
  32. Vikulin, A.V., and T.Yu. Tveritinova (2008), Momentum-wave nature of geological medium, Mosc. Univ. Geol. Bull. 63,6, 368–371, DOI: 10.3103/ S0145875208060033.CrossRefGoogle Scholar
  33. Vikulin, A.V., A.G. Ivanchin, and T.Yu. Tveritinova (2011), Moment vortex geodynamics, Mosc. Univ. Geol. Bull. 66,1, 29–36, DOI: 10.3103/S014587521101008X.CrossRefGoogle Scholar
  34. Xie, X.-S. (2004), Discussion on rotational tectonics stress field and the genesis of circum-Ordos landmass fault system, Acta Seismol. Sinica 17,4, 464–472.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Alexandr V. Vikulin
    • 1
    Email author
  • Tatiana Yu. Tveritinova
    • 2
  • Alexandr G. Ivanchin
    • 3
  1. 1.Institute of Volcanology and Seismology, Far East BranchRussian Academy of SciencesPetropavlovsk-KamchatskiRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Muzyka Trading House, Ltd.TomskRussia

Personalised recommendations