Advertisement

Acta Geophysica

, Volume 61, Issue 1, pp 60–83 | Cite as

Probabilistic model to forecast earthquakes in the Zemmouri (Algeria) seismoactive area on the basis of moment magnitude scale distribution functions

  • Kamel Baddari
  • Said Makdeche
  • Fouzi Bellalem
Research article

Abstract

Based on the moment magnitude scale, a probabilistic model was developed to predict the occurrences of strong earthquakes in the seismoactive area of Zemmouri, Algeria. Firstly, the distributions of earthquake magnitudes M i were described using the distribution function F 0(m), which adjusts the magnitudes considered as independent random variables. Secondly, the obtained result, i.e., the distribution function F 0(m) of the variables M i was used to deduce the distribution functions G(x) and H(y) of the variables Y i = Log M 0,i and Z i = M 0,i , where (Y i ) i and (Z i ) i are independent. Thirdly, some forecast for moments of the future earthquakes in the studied area is given.

Key words

probabilistic model Zemmouri seismoactive area seismic magnitude scale prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamaki, A., E.E. Papadimitriou, G.M. Tsaklidis, and V. Karakostas (2011), Statistical properties of aftershock rate decay: implication for the assess-ment of continuing activity, Acta Geophys. 59,4, 748–769, DOI: 10.2478/s11600-011-0016-2.CrossRefGoogle Scholar
  2. Akinci, A. (2010), HAZGRIDX: earthquake forecasting model for ML ≥ 5.0 earthquakes in Italy based on spatially smoothed seismicity, Ann. Geophys. 53,3, 51–61, DOI: 10.4401/ag-4811.Google Scholar
  3. An, W., X. Jin, J. Yang, P. Dong, J. Zhao, and H. Zhang (2007), Application of a time-magnitude prediction model for earthquakes, Appl. Geophys. 4,2, 138–145, DOI: 10.1007/s11770-007-0020-0.CrossRefGoogle Scholar
  4. Baddari, K., and A.D. Frolov (2010), Regularities in discrete hierarchy seismoacoustic mode in a geophysical field, Ann. Geophys. 53,5–6, 31–42, DOI: 10.4401/ag.4725.Google Scholar
  5. Baddari, K., G.A. Sobolev, A.D. Frolov, and A.V. Ponomarev (1999), An integrated study of physical precursors of failure in relation to earthquake prediction using large scale rock blocks, Ann. Geophys. 42,5, 771–787.Google Scholar
  6. Baddari, K., A.D. Frolov, V. Tourtchine, and F. Rahmoune (2011), An integrated study of the dynamics of electromagnetic and acoustic regimes during failure of complex macrosystems using rock blocks, Rock Mech. Rock Eng. 44,3, 269–280, DOI: 10.1007/s00603-010-0130-5.CrossRefGoogle Scholar
  7. Bogdanov, V.V., A.V. Pavlov, and A.L. Polyukhova (2010), A probabilistic model of seismicity: Kamchatka earthquakes, J. Volcanol. Seismol. 4,6, 412–422, DOI: 10.1134/S0742046310060059.CrossRefGoogle Scholar
  8. Catalli, F., M. Cocco, R. Console, and L. Chiaraluce (2008), Modelling seismicity rate changes during the 1997 Umbria-Marche sequence (central Italy) through a rate- and state-dependent model, J. Geophys. Res. 113, B11301, DOI: 10.1029/2007JB005356.CrossRefGoogle Scholar
  9. Console, R., D. Pantosti, and G. D’Addezio (2002), Probabilistic approach to earthquake prediction, Ann. Geophys. 45,6, 723–731.Google Scholar
  10. Console, R., M. Murru, F. Catalli, and G. Falcone (2007), Real time forecasts through an earthquake clustering model constrained by the rate- and-state constitutive law: Comparison with a purely stochastic ETAS model, Seismol. Res. Lett. 78,1, 49–56, DOI: 10.1785/gssrl.78.1.49.CrossRefGoogle Scholar
  11. Cornell, C.A. (1968), Engineering seismic risk analysis, Bull. Seismol. Soc. Am. 58,5, 1583–1606.Google Scholar
  12. Csikor, F.F., C. Motz, D. Weygand, M. Zaiser, and S. Zapperi (2007), Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale, Science 318,5848, 251–254, DOI: 10.1126/science. 1143719.CrossRefGoogle Scholar
  13. Dahmen, K.A., Y. Ben-Zion, and J.T. Uhl (2009), Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches, Phys. Rev. Lett. 102,17, 175501, DOI: 10.1103/PhysRevLett.102.175501.CrossRefGoogle Scholar
  14. Das, R., H.R. Wason, and M.L. Sharma (2011), Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude, Nat. Hazards 59,2, 801–810, DOI: 10.1007/s11069-011-9796-6.CrossRefGoogle Scholar
  15. Evison, F. (1999), On the existence of earthquake precursors, Ann. Geophys. 42,5, 763–770.Google Scholar
  16. Gardner, J.K., and L. Knopoff (1974), Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? Bull. Seismol. Soc. Am. 64,5, 1363–1367.Google Scholar
  17. Gusev, A.A. (1991), Intermagnitude relationship and asperity statistics, Pure Appl. Geophys. 136,4, 515–527, DOI: 10.1007/BF00878585.CrossRefGoogle Scholar
  18. Hanks, T.C., and H. Kanamori (1979), A moment magnitude scale, J. Geophys. Res. 84,B5, 2348–2350, DOI: 10.1029/JB084iB05p02348.CrossRefGoogle Scholar
  19. Hu, Y. (1990), Synthetical probability method in analysis of seismic dangerous degree [M], Seismological Press, Beijing, 1–8 (in Chinese).Google Scholar
  20. Kagan, Y.Y. (2002), Seismic moment distribution revised: I. Statistical results, Geophys. J. Int. 148,3, 520–541, DOI: 10.1046/j.1365-246x.2002.01594.x.CrossRefGoogle Scholar
  21. Kagan, Y.Y. (2005), Earthquake slip distribution: A statistical model, J. Geophys. Res. 110,5, B05S11, 1–15, DOI: 10.1029/2004JB003280.Google Scholar
  22. Kagan, Y.Y. (2010), Earthquake size distribution: Power-law with exponent β ≡ 1/2?, Tectonophysics 490, 1–2, 103–114, DOI: 10.1016/j.tecto.2010.04.034.Google Scholar
  23. Kagan, Y.Y., and L. Knopoff (1981), Stochastic synthesis of earthquake catalogs, J. Geophys. Res. 86,B4, 2853–2862, DOI: 10.1029/JB086iB04p02853.CrossRefGoogle Scholar
  24. Kagan, Y.Y., and F. Schoenberg (2001), Estimation of the upper cutoff parameter for the tapered Pareto distribution, J. Appl. Probab. 38A, 158–175, DOI: 10.1239/jap/1085496599.CrossRefGoogle Scholar
  25. Kanamori, H. (1977), The energy release in great earthquakes, J. Geophys. Res. 82,20, 2981–2987, DOI: 10.1029/JB082i020p02981.CrossRefGoogle Scholar
  26. Kanamori, H. (2004), The diversity of the physics of earthquakes, Proc. Japan Acad. B 80,7, 297–316, DOI: 10.2183/pjab.80.297.CrossRefGoogle Scholar
  27. King, G.C.P., and M. Cocco (2001), Fault interaction by elastic stress changes: New clues from earthquake sequences, Adv. Geophys. 44, 1–38, DOI: 10.1016/S0065-2687(00)80006-0.CrossRefGoogle Scholar
  28. Kolmogorov, A.N. (1974), Basic Concepts of Probability Theory, Nauka, Moscow, 200 pp. (in Russian).Google Scholar
  29. Kuksenko, V.S., Kh.F. Makhmudov, and B.Ts. Manzhikov (2010), Damage accumulation model for solids and the catastrophy prediction for large-scale objects, J. Mining Sci. 46,4, 384–393, DOI: 10.1007/s10913-010-0048-z.CrossRefGoogle Scholar
  30. Lavenda, B.H., and E. Cipollone (2000), Extreme value statistics and thermodynamics of earthquakes: aftershock sequences, Ann. Geofis. 43,5, 967–982, DOI: 10.4401/ag-3673.Google Scholar
  31. Mezcua, J., J. Rueda, and R.M. García Blanco (2011), A new probabilistic seismic hazard study of Spain, Nat. Hazards 59, 2, DOI: 10.1007/s11069-011-9819-3.CrossRefGoogle Scholar
  32. Mouayn, I., B.A. Tadili, L. Aït Brahim, M. Ramdani, M. Limouri, and N. Jabour (2004), Duration magnitude scale and site residuals for Northern Morocco, Pure Appl. Geophys. 161,5–6, 1061–1080, DOI: 10.1007/s00024-003-2497-7.CrossRefGoogle Scholar
  33. Ogata, Y., and K. Katsura (2006), Immediate and updated forecasting of aftershock hazard, Geophys. Res. Lett. 33, L10305, DOI: 101029/2006GL025888.CrossRefGoogle Scholar
  34. Ogata, Y., K. Katsura, and M. Tanemura (2003), Modelling heterogeneous spacetime occurrences of earthquakes and its residual analysis, J. Roy. Stat. Soc. C — Appl. Statist. 52,4, 499–509, DOI: 10.1111/1467-9876.00420.CrossRefGoogle Scholar
  35. Papazachos, B.C., E.E. Papadimitriou, G.F. Karakaisis, and D.G. Panagiotopoulos (1997), Long-term earthquake prediction in the circum-Pacific convergent belt, Pure Appl. Geophys. 149,1, 173–217, DOI: 10.1007/BF00945167.CrossRefGoogle Scholar
  36. Pei, T., C.-H. Zhou, Q.-L. Li, and J.-B. Chen (2002), Statistical analysis on temporal-spatial correlativity within temporal doublets of strong earthquakes in North China and its vicinity, Acta Seismol. Sinica 15,1, 56–62, DOI: 10.1007/s11589-002-0047-5.CrossRefGoogle Scholar
  37. Pisarenko, V.F., and M.V. Rodkin (2009), The instability of the Mmax parameter and an alternative to its using, Izv. Phys. Solid Earth 45,12, 1081–1092, DOI: 10.1134/S1069351309120052.CrossRefGoogle Scholar
  38. Purcaru, G., and H. Berckhemer (1978), A magnitude scale for very large earthquakes, Tectonophysics 49,3–4, 189–198, DOI: 10.1016/0040-1951(78)90177-4.CrossRefGoogle Scholar
  39. Serpelloni, E., G. Vannucci, S. Pondrelli, A. Argnani, G. Casula, M. Anzidei, P. Baldi, and P. Gasperini (2007), Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data, Geophys. J. Int. 169,3, 1180–1200, DOI: 10.1111/j.1365-246X.2007.03367.x.CrossRefGoogle Scholar
  40. Smirnov, V.B., A.V. Ponomarev, P. Bernard, and A.V. Patonin (2010), Regularities in transient modes in the seismic process according to the laboratory and natural modeling, Izv. Phys. Solid Earth 46,2, 104–135, DOI: 10.1134/S1069351310020023.CrossRefGoogle Scholar
  41. Sobolev, G.A. (2011), Seismicity dynamics and earthquake predictability, Nat. Hazards Earth Syst. Sci. 11, 445–458, DOI: 10.5194/nhess-11-445-2011.CrossRefGoogle Scholar
  42. Sobolev, G.A., and A.V. Ponomarev (2003), Earthquake Physics and Precursors, Nauka, Moscow, 270 pp. (in Russian).Google Scholar
  43. Steacy, S., S.S. Nalbant, J. McCloskey, C. Nostro, O. Scotti, and D. Baumont (2005), Onto what planes should Coulomb stress perturbations be resolved?, J. Geophys. Res. 110, B05S15, DOI: 10.1029/2004JB003356.CrossRefGoogle Scholar
  44. Sykes, L.R. (1983), Predicting great earthquakes. In: H. Kanamori, and E. Boschi (eds.), Earthquakes: Observation, Theory, and Interpretation, North-Holland Publ., Amsterdam, 398–435.Google Scholar
  45. Thatcher, W., and T.C. Hanks (1973), Source parameters of southern Clifornia earthquakes, J. Geophys. Res. 78,35, 8547–8576, DOI: 10.1029/JB078i035p08547.CrossRefGoogle Scholar
  46. Utsu, T. (2002), Relationships between magnitude scales. In: W.H.K. Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger (eds.), International Handbook of Earthquake and Engineering Seismology, Vol. 81, Part A, Ser. “International Geophysics”, Academic Press, Amsterdam, 733–746, DOI: 10.1016/S0074-6142(02)80247-9.CrossRefGoogle Scholar
  47. Wyss, M., and Y. Toya (2000), Is background seismicity produced at a stationary Poissonian rate?, Bull. Seismol. Soc. Am. 90,5, 1174–1187, DOI: 10.1785/011999158.CrossRefGoogle Scholar
  48. Zavyalov, A.D. (2006), Intermediate Term Earthquake Prediction, Nauka, Moscow, 254 pp. (in Russian).Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Laboratory of Physics of the Earth UMBBBoumerdesAlgeria
  2. 2.Department of Mathematics UMBBLaboratory LIMOSE UMBBBoumerdesAlgeria
  3. 3.Research Center in AstronomyAstrophysics and Geophysics (CRAAG)AlgiersAlgeria

Personalised recommendations