Acta Geophysica

, Volume 60, Issue 6, pp 1502–1546 | Cite as

Effects of a fully submerged boulder within a boulder array on the mean and turbulent flow fields: Implications to bedload transport

  • Athanasios N. Papanicolaou
  • Casey M. Kramer
  • Achilleas G. Tsakiris
  • Thorsten Stoesser
  • Sandeep Bomminayuni
  • Zhuo Chen
Research Article


The objective of this coupled experimental and numerical study is to provide insight into the mean and turbulent flow fields within an array of fully submerged, isolated, immobile boulders. Our study showed that the velocity defect law performed well for describing the mean flow around the boulder within the array. A prerequisite, however, was to accurately estimate the spatial variability of u* around the boulder, which was achieved via the boundary characteristics method. The u* exhibited considerable spatial variability within the array and form roughness was shown to be up to 2 times larger than the skin roughness in the boulder near-wake region. Because the boulders bear a significant amount of the flow shear, the available bed shear stress for entrainment of the mobile sediment, τ ols , near the boulders was roughly 50% lower than the ambient τ ols . The τ ols variability induced by the boulders could lead to a threefold overestimation of the sediment transport rate.

Key words

boulder array velocity profile friction velocity turbulent structures large-eddy simulation (LES) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afzalimehr, H., and F. Anctil (2000), Accelerating shear velocity in gravel-bed channels, Hydrolog. Sci. J. 45,1, 113–124, DOI: 10.1080/0262666000 9492309.CrossRefGoogle Scholar
  2. Balachandar, R., K. Hagel, and D. Blakely (2002), Velocity distribution in decelerating flow over rough surfaces, Can. J. Civ. Eng. 29,2, 211–221, DOI: 10.1139/l01-089.CrossRefGoogle Scholar
  3. Bathurst, J.C. (1987), Critical conditions for bed material movement in steep, boulder-bed streams. In: R.L. Beshta, T. Blinn, G.E. Grant, F.J. Swanson, and G.G. Ice (eds.), Proc. Corvallis Symp. “Erosion and Sedimentation in the Pacific Rim”, IAHS Publ. No. 165, Wallingford, UK, 309–318.Google Scholar
  4. Bettess, R. (1984), Initiation of sediment transport in gravel streams. In: Proc. Inst. Civil Eng., Part 2, 77, 79–88.CrossRefGoogle Scholar
  5. Biron, P.M., C. Robson, M.F. Lapointe, and S.J. Gaskin (2004), Comparing different methods of bed shear stress estimates in simple and complex flow fields, Earth Surf. Process. Land. 29,11, 1403–1415, DOI: 10.1002/ esp.1111.CrossRefGoogle Scholar
  6. Bomminayuni, S.K. (2010), Large eddy simulation of turbulent flow over a rough bed using the immersed boundary method, M.Sc. Thesis, Georgia Institute of Technology, Atlanta, Georgia.Google Scholar
  7. Byrd, T.C., D.J. Furbish, and J. Warburton (2000), Estimating depth-averaged velocities in rough channels, Earth Surf. Process. Land. 25,2, 167–173, DOI: 10.1002/(SICI)1096-9837(200002)25:2<167::AID-ESP66>3.0.CO;2-G.CrossRefGoogle Scholar
  8. Cao, Z. (1997), Turbulent bursting-based sediment entrainment function, J. Hydraul. Eng. 123,3, 233–236, DOI: 10.1061/(ASCE)0733-9429(1997)123:3(233).CrossRefGoogle Scholar
  9. Cardoso, A.H., W.H. Graf, and G. Gust (1989), Uniform flow in smooth open channel, J. Hydraul. Res. 27, 603–616, DOI: 10.1080/00221688909499113.CrossRefGoogle Scholar
  10. Clauser, F.H. (1956), The turbulent boundary layer, Adv. Appl. Mech. 4, 1–51, DOI: 10.1016/S0065-2156(08)70370-3.CrossRefGoogle Scholar
  11. Coleman, N.L. (1967), A theoretical and experimental study of drag and lift forces acting on a sphere resting on a hypothetical streambed. In: Proc. 12th Congress Int. Assoc. Hydraul. Res. (IAHR), 11–14 September 1967, Colorado State University, Fort Collins, CO, paper C22, 185–192.Google Scholar
  12. Coles, D. (1956), The law of the wake in the turbulent boundary layer, J. Fluid Mech. 1,2, 191–226, DOI: 10.1017/S0022112056000135.CrossRefGoogle Scholar
  13. Dey, S., and R.V. Raikar (2007), Characteristics of loose rough boundary streams at near-threshold, J. Hydraul. Eng. ASCE 133,3, 288–304, DOI: 10.1061/ (ASCE)0733-9429(2007)133:3(288).CrossRefGoogle Scholar
  14. Dey, S., S. Sarkar, S.K. Bose, S. Tait, and O. Castro-Orgaz (2011), Wall-wake flows downstream of a sphere placed on a plane rough-wall, J. Hydraul. Eng. ASCE 137,10, 1173–1189, DOI: 10.1061/(ASCE)HY.1943-7900.0000441.CrossRefGoogle Scholar
  15. Fernandez-Luque, R., and R. Van Beek (1976), Erosion and transport of bed-load sediment, J. Hydraul. Res. 14,2, 127–144, DOI: 10.1080/002216876 09499677.CrossRefGoogle Scholar
  16. Ferro, V. (2003), ADV measurements of velocity distributions in a gravel-bed flume, Earth Surf. Process. Land. 28,7, 707–722, DOI: 10.1002/esp.467.CrossRefGoogle Scholar
  17. Ferro, V., and G. Baiamonte (1994), Flow velocity profiles in gravel-bed rivers, J. Hydraul. Eng. 120,1, 60–80, DOI: 10.1061/(ASCE)0733-9429(1994) 120:1(60).CrossRefGoogle Scholar
  18. Fox, J.F., A.N. Papanicolaou, and L. Kjos (2005), Eddy taxonomy methodology around a submerged barb obstacle within a fixed rough bed, J. Eng. Mech. 131,10, 1082–1094, DOI: 10.1061/(ASCE)0733-9399(2005)131:10(1082).CrossRefGoogle Scholar
  19. Frederich, O., E. Wassen, and F. Thiele (2008), Prediction of the flow around a short wall-mounted finite cylinder using LES and DES, J. Numer. Anal. Ind. Appl. Math. 3,3–4, 231–247.Google Scholar
  20. Fröhlich, J., and W. Rodi (2004), LES of the flow around a circular cylinder of finite height, Int. J. Heat Fluid Flow 25,3, 537–548, DOI: 10.1016/ j.ijheatfluidflow.2004.02.006.CrossRefGoogle Scholar
  21. Goring, D.G., and V.I. Nikora (2002), Despiking acoustic Doppler velocimeter data, J. Hydraul. Eng. ASCE 128,1, 117–126, DOI: 10.1061/(ASCE)0733-9429(2002)128:1(117).CrossRefGoogle Scholar
  22. Hinze, J.O. (1975), Turbulence, McGraw-Hill, New York.Google Scholar
  23. Hofland, B. (2005), Rock and roll: Turbulence-induced damage to granular bed protections, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
  24. Kironoto, B.A., and W.H. Graf (1994), Turbulence characteristics in rough uniform open-channel flow. In: Proc. Inst. Civ. Eng., Water Maritime and Energy, 106,4, 333–344.CrossRefGoogle Scholar
  25. Krajnović, S. (2008), Flow around a surface-mounted finite cylinder: A challenging case for LES, Notes Num. Fluid Mech. Mul. D. 97, 305–315, DOI: 10.1007/ 978-3-540-77815-8_32.CrossRefGoogle Scholar
  26. Kramer, C.M. (2005), The role of relative submergence on cluster microtopography and bedload predictions in mountain streams, M.Sc. Thesis, The University of Iowa, Iowa City, Iowa.Google Scholar
  27. Lacey, R.W.J., and A.G. Roy (2008), Fine-scale characterization of the turbulent shear layer of an instream pebble cluster, J. Hydraul. Eng. ASCE 134,7, 925–936, DOI: 10.1061/(ASCE)0733-9429(2008)134:7(925).CrossRefGoogle Scholar
  28. Lawless, M., and A. Robert (2001), Scales of boundary resistance in coarse-grained channels: turbulent velocity profiles and implications, Geomorphology 39,3–4, 221–238, DOI: 10.1016/S0169-555X(01)00029-0.CrossRefGoogle Scholar
  29. Lee, T., C.-L. Lin, and C.A. Friehe (2007), Large-eddy simulation of air flow around a wall-mounted cylinder and a tripod tower, J. Turbul. 8,N29, 1–28, DOI: 10.1080/14685240701383122.Google Scholar
  30. Martin, V., T.S.R. Fischer, R.G. Millar, and M.C. Quick (2002), ADV data analysis for turbulent flows: Low correlation problem. In: T.L. Wahl (ed.), Proc. Conf. Hydraulic Measurements and Experimental Methods, 28 July–1 August 2002 Estes Park, CO, USA, American Society of Civil Engineers, Reston, USA, DOI: 10.1061/40655(2002)101.Google Scholar
  31. Morris, H.M. (1955), Flow in rough conditions, Trans. ASCE 120, 373–398.Google Scholar
  32. Nezu, I., and H. Nakagawa (1993), Turbulence in Open-Channel Flows, Balkema, Rotterdam.Google Scholar
  33. Ničeno, B., A.D.T. Dronkers, and K. Hanjalić (2002), Turbulent heat transfer from a multi-layered wall-mounted cube matrix: a large-eddy simulation, Int. J. Heat Fluid Flow 23,2, 173–185, DOI: 10.1016/S0142-727X(01)00147-3.CrossRefGoogle Scholar
  34. Nikora, V.I., and D.G. Goring (1998), ADV measurements of turbulence: Can we improve their interpretation?, J. Hydraul. Eng. ASCE 124,6, 630–634, DOI: 10.1061/(ASCE)0733-9429(1998)124:6(630).CrossRefGoogle Scholar
  35. Nikora, V.I., I. McEwan, S. McLean, S. Coleman, D. Pokrajac, and R. Walters (2007), Double-averaging concept for rough-bed open-channel and overland flows: Theoretical background, J. Hydraul. Eng. ASCE 133,8, 873–883, DOI: 10.1061/(ASCE)0733-9429(2007)133:8(873).CrossRefGoogle Scholar
  36. Oengören, A., and S. Ziada (1998), An in-depth study of vortex shedding, acoustic resonance and turbulent forces in normal triangle tube arrays, J. Fluid. Struct. 12,6, 717–758, DOI: 10.1006/jfls.1998.0162.CrossRefGoogle Scholar
  37. Paik, J., F. Sotiropoulos, and F. Porté-Agel (2009), Detached eddy simulation of flow around two wall-mounted cubes in tandem, Int. J. Heat Fluid Flow 30,2, 286–305, DOI: 10.1016/j.ijheatfluidflow.2009.01.006.CrossRefGoogle Scholar
  38. Palau-Salvador, G., T. Stoesser, and W. Rodi (2008), LES of the flow around two cylinders in tandem, J Fluids Struct. 24,8, 1304–1312, DOI: 10.1016/ j.jfluidstructs.2008.07.002.CrossRefGoogle Scholar
  39. Palau-Salvador, G., T. Stoesser, J. Fröhlich, M. Kappler, and W. Rodi (2010), Large eddy simulations and experiments of flow around finite-height cylinders, Flow Turbul. Combust. 84,2, 239–275, DOI: 10.1007/s10494-009-9232-0.CrossRefGoogle Scholar
  40. Papanicolaou, A.N., and C.M. Kramer (2005), The role of relative submergence on cluster microtopography and bedload predictions on mountain streams. In: G. Parker and M.H. Garcia (eds.), Proc. Int. Symp “River, Coastal and Estuarine Morphodynamics”, 4–7 October 2005, Urbana, USA, Taylor and Francis, Philadephia.Google Scholar
  41. Papanicolaou, A.N., and A. Schuyler (2003), Cluster evolution and flow-frictional characteristics under different sediment availabilities and specific gravity, J. Eng. Mech. ASCE 129,10, 1206–1219, DOI: 10.1061/(ASCE)0733-9399(2003)129:10(1206).CrossRefGoogle Scholar
  42. Papanicolaou, A.N., P. Diplas, N. Evangelopoulos, and S. Fotopoulos (2002), Stochastic incipient motion criterion for spheres under various bed packing conditions, J. Hydraul. Eng. ASCE 128,4, 369–380, DOI: 10.1061/(ASCE) 0733-9429(2002)128:4(369).CrossRefGoogle Scholar
  43. Papanicolaou, A.N., A. Bdour, and E. Wicklein (2004), One-dimensional hydrodynamic/ sediment transport model applicable to steep mountain streams, J. Hydraul. Res. 42,4, 357–375, DOI: 10.1080/00221686.2004. 9641204.Google Scholar
  44. Papanicolaou, A.N., D.C. Dermisis, and M. Elhakeem (2011), Investigating the role of clasts on the movement of sand in gravel bed rivers, J. Hydraul. Eng. ASCE 137,9, DOI: 10.1061/(ASCE)HY.1943-7900.0000381.Google Scholar
  45. Parker, G. (2008), Transport of gravel and sediment mixtures, In: M.H. García (ed.), Sedimentation Engineering: Processes, Measurements, Modeling, and Practice, ASCE Manuals and Reports on Engineering Practice No. 110, American Society of Civil Engineers, Reston, USA.Google Scholar
  46. Pattenden, R.J., N.W. Bressloff, S.R. Turnock, and X. Zhang (2007), Unsteady simulations of the flow around a short surface-mounted cylinder, Int. J. Numer. Methods Fluids 53,6, 895–914, DOI: 10.1002/fld.1309.CrossRefGoogle Scholar
  47. Pitlick, J., E.R. Mueller, C. Segura, R. Cress, and M. Torizzo (2008), Relation between flow, surface-layer armoring and sediment transport in gravel-bed rivers, Earth Surf. Process. Land. 33,8, 1192–1209, DOI: 10.1002/esp. 1607.CrossRefGoogle Scholar
  48. Raffel, M., C. Willert, S. Wereley, and J. Kompenhans (2007), Particle Image Velocimetry: A Practical Guide, 2nd ed., Springer, Berlin.Google Scholar
  49. Raupach, M.R. (1992), Drag and drag partition on rough surfaces, Bound-Lay. Meteorol. 60,4, 375–395, DOI: 10.1007/BF00155203.CrossRefGoogle Scholar
  50. Rickenmann, D. (2001), Comparison of bed load transport in torrents and gravel bed streams, Water Resour. Res. 37,12, 3295–3305, DOI: 10.1029/2001WR 000319.CrossRefGoogle Scholar
  51. Rodi, W., J.H. Ferziger, M. Breuer, and M. Pourquiée (1997), Status of large eddy simulation: Results of a workshop, J. Fluid. Eng. 119,2, 248–262, DOI: 10.1115/1.2819128.CrossRefGoogle Scholar
  52. Rowiński, P.M., J. Aberle, and A. Mazurczyk (2005), Shear velocity estimation in hydraulic research, Acta Geophys. Pol. 53,4, 567–583.Google Scholar
  53. Roy, A.G., T. Buffin-Bélanger, H. Lamarre, and A.D. Kirkbride (2004), Size, shape and dynamics of large-scale turbulent flow structures in a gravel-bed river, J. Fluid Mech. 500, 1–27, DOI: 10.1017/S0022112003006396.CrossRefGoogle Scholar
  54. Sadeque, M.A.F., N. Rajaratnam, and M.R. Loewen (2009), Effects of bed roughness on flow around bed-mounted cylinders in open channels, J. Hydraul. Eng. ASCE 135,2, 100–110, DOI: 10.1061/(ASCE)0733-9399(2009) 135:2(100).Google Scholar
  55. Schlichting, H. (1979), Boundary-Layer Theory, 7th ed., McGraw-Hill, New York.Google Scholar
  56. Schmidt, S., and F. Thiele (2002), Comparison of numerical methods applied to the flow over wall-mounted cubes, Int. J. Heat Fluid Flow 23,3, 330–339, DOI: 10.1016/S0142-727X(02)00180-7.CrossRefGoogle Scholar
  57. Shamloo, H., N. Rajaratnam, and C. Katopodis (2001), Hydraulics of simple habitat structures, J. Hydraul. Res. 39,4, 351–366, DOI: 10.1080/00221680 109499840.CrossRefGoogle Scholar
  58. SonTek (2001), ADV Operation Manual, SonTek Inc., San Diego.Google Scholar
  59. Stoesser, T., and V.I. Nikora (2008), Flow structure over square bars at intermediate submergence: Large Eddy Simulation study of bar spacing effect, Acta Geophys. 56,3, 876–893, DOI: 10.2478/s11600-008-0030-1.CrossRefGoogle Scholar
  60. Stoesser, T., G. Palau-Salvador, W. Rodi, and P. Diplas (2009), Large Eddy Simulation of turbulent flow through submerged vegetation, Transp. Porous Med. 78,3, 347–365, DOI: 10.1007/s11242-009-9371-8.CrossRefGoogle Scholar
  61. Strom, K.B., and A.N. Papanicolaou (2007), ADV measurements around a cluster microform in a shallow mountain stream, J. Hydraul. Eng. ASCE 133,12, 1379–1389, DOI: 10.1061/(ASCE)0733-9429(2007)133:12(1379).CrossRefGoogle Scholar
  62. Strom, K.B., A.N. Papanicolaou, N. Evangelopoulos, and M. Odeh (2004), Microforms in gravel bed rivers: Formation, disintegration, and effects on bedload transport, J. Hydraul. Eng. ASCE 130,6, 554–567, DOI: 10.1061/ (ASCE)0733-9429(2004)130:6(554).CrossRefGoogle Scholar
  63. Strom, K.B., A.N. Papanicolaou, and G. Constantinescu (2007), Flow heterogeneity over 3D cluster microform: Laboratory and numerical investigation, J. Hydraul. Eng. ASCE 133,3, 273–287, DOI: 10.1061/(ASCE)0733-9429 (2007)133:3(273).CrossRefGoogle Scholar
  64. Vanoni, V.A., and N.H. Brooks (1957), Laboratory studies of the roughness and suspended load of alluvial streams, Sedimentation Laboratory Rep. No. E68, California Institute of Technology, Pasadena.Google Scholar
  65. Wahl, T.L. (2003), Discussion of “Despiking acoustic doppler velocimeter data” by Derek G. Goring and Vladimir I. Nikora, J. Hydraul. Eng. ASCE 129,6, 484–487, DOI: 10.1061/(ASCE)0733-9429(2003)129:6(484).CrossRefGoogle Scholar
  66. Wei, T., R. Schmidt, and P. McMurtry (2005), Comment on the Clauser chart method for determining the friction velocity, Exp. Fluids 38,5, 695–699, DOI: 10.1007/s00348-005-0934-3.CrossRefGoogle Scholar
  67. White, F.M. (1991), Viscous Fluid Flow, 2nd ed., McGraw-Hill Inc., New York.Google Scholar
  68. Yager, E.M., J.W. Kirchner, and W.E. Dietrich (2007), Calculating bed load transport in steep boulder bed channels, Water Resour. Res. 43, W07418, DOI: 10.1029/2006WR005432.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Athanasios N. Papanicolaou
    • 1
  • Casey M. Kramer
    • 2
  • Achilleas G. Tsakiris
    • 1
  • Thorsten Stoesser
    • 3
  • Sandeep Bomminayuni
    • 3
  • Zhuo Chen
    • 3
  1. 1.IIHR-Hydroscience and EngineeringThe University of IowaIowa CityUSA
  2. 2.Washington State Department of TransportationOlympiaUSA
  3. 3.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations