Acta Geophysica

, Volume 60, Issue 5, pp 1454–1473 | Cite as

The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a micro-UAS for atmospheric boundary layer research

  • Joachim Reuder
  • Marius O. Jonassen
  • Haraldur Ólafsson
Article

Abstract

During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a flexible tool for atmospheric boundary layer (ABL) research to be operated as sounding system for the lowest 4 km of the atmosphere. Recently two main technical improvements have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation. The implementation of a 5-hole probe for determining the 3D flow vector with 100 Hz resolution and a faster temperature sensor has enhanced the measurement capabilities.

Results from two recent field campaigns are presented. During the first one, in Denmark, the potential of the system to study the effects of wind turbines on ABL turbulence was shown. During the second one, the BLLAST field campaign at the foothills of the Pyrenees, SUMO data proved to be highly valuable for studying the processes of the afternoon transition of the convective boundary layer.

Key words

atmospheric boundary layer unmanned aircraft system BLLAST field campaign wind farm effect on turbulence morning cooling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeroprobe (2012), On-The-Fly! Air Data System User’s Manual, Revision F, 1/2012, http://www.aeroprobe.com/uploads/On-The-Fly_Manual_RevF.docx (last accessed 03.02.2012).
  2. BLLAST (2011), BLLAST 2011 Experimental Plans, http://bllast.sedoo.fr/campaigns/2011/Experimental-plans-document_v8.pdf (last accessed 15.01.2012).
  3. Brisset, P., A. Drouin, M. Gorraz, P.-S. Huard, and J. Tyler (2006), The Paparazzi solution, http://www.recherche.enac.fr/paparazzi/papers2006/mav06paparazzi.pdf.
  4. Curry, J.A., J. Maslanik, G. Holland, and J. Pinto (2004), Applications of Aerosondes in the Arctic, Bull. Am. Meteorol. Soc. 85,12, 1855–1861, DOI: 10.1175/BAMS-85-12-1855.CrossRefGoogle Scholar
  5. Egger, J., S. Bajrachaya, R. Heinrich, P. Kolb, S. Lämmlein, M. Mech, J. Reuder, W. Schäper, P. Shakya, J. Schween, and H. Wendt (2002), Diurnal winds in the Himalayan Kali Gandaki Valley. Part III: Remotely piloted aircraft soundings, Monthly Weath. Rev. 130,8, 2042–2058, DOI: 10.1175/1520-0493 (2002)130〈2042:DWITHK〉2.0.CO;2.CrossRefGoogle Scholar
  6. Egger, J., L. Blacutt, F. Ghezzi, R. Heinrich, P. Kolb, S. Lämmlein, M. Leeb, S. Meyer, E. Palenque, J. Reuder, W. Schäper, J. Schween, R. Torrez, and F. Zaratti (2005), Diurnal circulation of the Bolivian Altiplano. Part I: Observations, Monthly Weath. Rev. 133,4, 911–924, DOI: 10.1175/MWR2894.1.CrossRefGoogle Scholar
  7. ENAC (2008), Paparazzi User’s Manual, http://paparazzi.enac.fr/wikiimages/Usersmanual.pdf (last accessed 15.01.2012).
  8. Holland, G.J., P.J. Webster, J.A. Curry, G. Tyrell, D. Gauntlett, G. Brett, J. Becker, R. Hoag, and W. Vaglienti (2001), The Aerosonde robotic aircraft: A new paradigm for environmental observations, Bull. Am. Meteorol. Soc. 82, 889.CrossRefGoogle Scholar
  9. Inoue, J., and J.A. Curry (2004), Application of Aerosondes to high-resolution observations of sea surface temperature over Barrow Canyon, Geophys. Res. Lett. 31, L14312, DOI: 10.1029/2004GL020336.CrossRefGoogle Scholar
  10. Janjic, Z. (2002), Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP meso models, NCEP Office Note No. 437, 61 pp.Google Scholar
  11. Kleissl, J., R.E. Honrath, M.P. Dziobak, D. Tanner, M. Val Martın, R.C. Owen, and D. Helmig (2007), Occurrence of upslope flows at the Pico mountaintop observatory: A case study of orographic flows on a small, volcanic island, J. Geopys. Res. 112, D10S35, DOI: 10.1029/2006JD007565.CrossRefGoogle Scholar
  12. Konrad, T.G., M.L. Hill, J.R. Rowland, and J.H. Meyer (1970), A small, radiocontrolled aircraft as a platform for meteorological sensors, APL Tech. Dig. 10, 11–19.Google Scholar
  13. Kristjánsson, J.E., I. Barstad, T. Aspelien, I. Føre, Ø. Godøy, Ø. Hov, E. Irvine, T. Iversen, E. Kolstad, T.E. Nordeng, H. McInnes, R. Randriamampianina, J. Reuder, Ø. Saetra, M. Shapiro, T. Spengler, and H. Ólafsson (2012), The Norwegian IPY-THORPEX: Polar lows and Arctic fronts during the 2008 Andøya campaign, Bull. Am. Metorol. Soc. 92,11, 1443–1466.CrossRefGoogle Scholar
  14. Ma, S., H. Chen, G. Wang, Y. Pan, and Q. Li (2004), A miniature robotic plane meteorological sounding system, Adv. Atmos. Sci. 21,6, 890–896.CrossRefGoogle Scholar
  15. Mayer, S., A. Sandvik, M. Jonassen, and J. Reuder (2010), Atmospheric profiling with the UAS SUMO: a new perspective for the evaluation of fine-scale atmospheric models, Meteorol. Atmos. Phys. DOI: 10.1007/s00703-010-0063-2.Google Scholar
  16. Mayer, S., G. Hattenberger, P. Brisset, M. Jonassen, and J. Reuder (2012), A “noflow-sensor” wind estimation algorithm for Unmanned Aerial Systems, Int. J. Micro Air Vehicles 4,1, 15–30, DOI: 10.1260/1756-8293.4.1.15.CrossRefGoogle Scholar
  17. Ramanathan, V., M.V. Ramana, G. Roberts, D. Kim, C. Corrigan, C. Chung, and D. Winker (2007), Warming trends in Asia amplified by brown cloud solar absorption, Nature 448, 575–578, DOI: 10.1038/nature06019.CrossRefGoogle Scholar
  18. Reuder, J., P. Brisset, M. Jonassen, M. Müller, and S. Mayer (2009), The Small Unmanned Meteorological Observer SUMO: A new tool for atmospheric boundary layer research, Meteorol. Z. 18,2, 141–147, DOI: 10.1127/0941-2948/2009/0363.CrossRefGoogle Scholar
  19. Reuder, J., M. Ablinger, H. Ágústsson, P. Brisset, S. Brynjólfsson, M. Garhammer, T. Jóhannesson, M.O. Jonassen, R. Kühnel, S. Lämmlein, T. de Lange, C. Lindenberg, S. Malardel, S. Mayer, M. Müller, H. Olafsson, O. Rögnvaldsson, W. Schäper, T. Spengler, G. Zängl, and J. Egger (2011), FLOHOF 2007: An overview of the mesoscale meteorological field campaign at Hofsjökull, Central Iceland, Meteorol. Atmos. Phys. 116,1–2, 1–13, DOI: 10.1007/s00703-010-0118-4.Google Scholar
  20. Serafin, S., and D. Zardi (2011), Daytime development of the boundary layer over a plain and in a valley under fair weather conditions: A comparison by means of idealized numerical simulations, J. Atmos. Sci. 68,9, 2128–2141, DOI: 10.1175/2011JAS3610.1.CrossRefGoogle Scholar
  21. Skamarock, W.C., J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, W. Wang, and J.G. Powers (2005), A description of the advanced research WRF version 2, NCAR Tech. Notes 468.Google Scholar
  22. Spengler, T., M. Ablinger, J.H. Schween, G. Zängl, and J. Egger (2009), Thermally driven flows at an asymmetric valley exit: Observations and model studies at the Lech Valley exit, Monthly Weath. Rev. 137,10, 3437–3455, DOI: 10.1175/2009MWR2779.1.CrossRefGoogle Scholar
  23. Spiess, T., J. Bange, M. Buschmann, and P. Vörsmann (2007), First application of the meteorological Mini-UAV M2AV, Meteorol. Z. 16,2, 159–169, DOI: 10.1127/0941-2948/2007/0195.CrossRefGoogle Scholar
  24. van den Kroonenberg, A., T. Martin, M. Buschmann, J. Bange, and P. Vörsmann (2008), Measuring the wind vector using the autonomous mini aerial vehicle M2AV, J. Atmos. Ocean. Tech. 25, 1969–1981, DOI: 10.1175/2008JTECHA1114.1.CrossRefGoogle Scholar
  25. van den Kroonenberg, A., S. Martin, F. Beyrich, and J. Bange (2011), Spatiallyaveraged temperature structure parameter over a heterogeneous surface measured by an unmanned aerial vehicle, Bound.-Layer Meteorol. 142,1, 55–77, DOI: 10.1007/s10546-011-9662-9.CrossRefGoogle Scholar
  26. Weigel, A.P., and M.W. Rotach (2004), Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley, Quart. J. Roy. Meteorol. Soc. 130, 2605–2627, DOI: 10.1256/qj.03.214.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Joachim Reuder
    • 1
  • Marius O. Jonassen
    • 1
  • Haraldur Ólafsson
    • 1
  1. 1.Geophysical InstituteUniversity of BergenBergenNorway

Personalised recommendations