Advertisement

Acta Geophysica

, Volume 60, Issue 3, pp 928–941 | Cite as

Fractal characteristics of the ULF emissions along a meridian profile, based on the 210 MM stations data

  • Anton Varlamov
  • Natalia Smirnova
  • Masashi Hayakawa
  • Kiyohumi Yumoto
Research Article

Abstract

Fractal analysis of magnetic records (1 Hz sampling rate) of 5 stations (Guam, Moshiri, Paratunka, Magadan, and Chokurdakh) located along the 210 magnetic meridian (210 MM) has been performed using the Higuchi method. The period of 22 months (October 1992 to July 1994) that embodies the date of the strong Guam earthquake of 8 August1993 has been considered. A comparison of the ULF emissions scaling parameters (spectral exponents β and fractal dimensions D) obtained at different latitudes has been made. Dependence of β and D on the Kp index of geomagnetic activity has been analyzed for each of the 24 local time intervals. It is revealed that D decreases ( β increases) with increasing geomagnetic activity at all stations, but the rates of decrease (increase) are different at different stations and in different time intervals. It is shown that the evening, night and early morning hours are preferable to study magnetospheric effects, whereas the noon hours are the most suitable for the analysis of lithospheric effects. A possibility of using the data of the 210 MM stations as reference materials for the Guam seismically active area is discussed.

Key words

ULF emissions fractal analysis 210 MM SOC dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bak, P. (1997), How Nature Works, Oxford University Press, Oxford, 210 pp.Google Scholar
  2. Bak, P., C. Tang, and K. Wiesenfeld (1987), Self-organized criticality: An explanation of 1/f noise, Phys. Rev. Lett. 59,4, 381–384, DOI: 10.1103/PhysRevLett.59.381.CrossRefGoogle Scholar
  3. Bak, P., C. Tang, and K. Wiesenfeld (1988), Self-organized criticality, Phys. Rev. A 38,1, 364–374, DOI: 10.1103/PhysRevA.38.364.CrossRefGoogle Scholar
  4. Berry, M.V. (1979), Diffractals, J. Phys. A 12,6, 781, DOI: 10.1088/0305-4470/12/6/008.CrossRefGoogle Scholar
  5. Burlaga, L.F., and L.W. Klein (1986), Fractal structure of the interplanetary magnetic field, J. Geophys. Res. 91,A1, 347–350, DOI: 10.1029/JA091iA01p00347.CrossRefGoogle Scholar
  6. Chang, T., S.W.Y. Tam, C.C. Wu, and G. Consolini (2003), Complexity, forced and/or self-organized criticality, and topological phase transitions in space plasmas, Space Sci. Rev. 107,1–2, 425–445, DOI: 10.1023/A: 1025502023494.CrossRefGoogle Scholar
  7. Feder, J. (1988), Fractals, Plenum Press, New York, 283 pp.Google Scholar
  8. Gotoh, K., M. Hayakawa, N.A. Smirnova, and K. Hattori (2004), Fractal analysis of seismogenic ULF emissions, Phys. Chem. Earth 29,4–9, 419–424, DOI: 10.1016/j.pce.2003.11.013.Google Scholar
  9. Hayakawa, M. (ed.) (1999), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Proc. Int. Workshop on Seismo-Electromagnetics of NASDA (IWSE1997), 2–5 March 1997, Chofu Tokyo, TERRAPUB, Tokyo.Google Scholar
  10. Hayakawa, M. (ed.) (2005), Programme and Extended Abstracts of International Workshop on Seismo-Electromagnetics (IWSE2005), 15–17 March 2005, Chofu Tokyo. Hayakawa, M., and O.A. Molchanov (eds.) (2002), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Proc. Int. Workshop on Seismo-Electromagnetics of NASDA (IWSO2000), 19–22 September 2000, Chofu Tokyo, TERRAPUB, Tokyo, 478 pp.Google Scholar
  11. Hayakawa, M., T. Ito, and N. Smirnova (1999), Fractal analysis of ULF geomagnetic data associated with the Guam earthquake on August 8, 1993, Geophys. Res. Lett. 26,18, 2797–2800, DOI: 10.1029/1999GL005367.CrossRefGoogle Scholar
  12. Hayakawa, M., Yu. Kopytenko, N. Smirnova, V. Troyan, and T. Peterson (2000), Monitoring ULF magnetic disturbances and schemes for recognizing earthquake precursors, Phys. Chem. Earth A 25,3, 263–269, DOI: 10.1016/S1464-1895(00)00042-9.CrossRefGoogle Scholar
  13. Hergarten, S. (2002), Self-Organized Criticality in Earth Systems, Springer-Verlag, Berlin Heidelberg, 272 pp.Google Scholar
  14. Higuchi, T. (1988), Approach to an irregular time series on the basis of the fractal theory, Physica D 31,2, 277–283, DOI: 10.1016/0167-2789(88)90081-4.CrossRefGoogle Scholar
  15. Higuchi, T. (1990), Relationship between the fractal dimension and the power law index for a time series: A numerical investigation, Physica D 46,2, 254–264, DOI: 10.1016/0167-2789(90)90039-R.CrossRefGoogle Scholar
  16. Ida, Y., and M. Hayakawa (2006), Fractal analysis for the ULF data during the 1993 Guam earthquake to study prefracture criticality, Nonlin. Processes Geophys. 13,4, 409–412, DOI: 10.5194/npg-13-409-2006.CrossRefGoogle Scholar
  17. Jensen, H.J. (1998), Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems, Cambridge Lecture Notes in Physics, Vol. 10, Cambridge University Press, Cambridge, 153 pp.Google Scholar
  18. Smirnova, N.A., and M. Hayakawa (2007), Fractal characteristics of the groundobserved ULF emissions in relation to geomagnetic and seismic activities, J. Atmos. Sol.-Terr. Phys. 69,15, 1833–1841, DOI: 10.1016/j.jastp.2007.08.001.CrossRefGoogle Scholar
  19. Smirnova, N., M. Hayakawa, K. Gotoh, and D. Volobuev (2001), Scaling characteristics of the ULF geomagnetic fields at the Guam seismoactive area and their dynamics in relation to the earthquake, Nat. Hazards Earth Syst. Sci. 1,3, 119–126, DOI: 10.5194/nhess-1-119-2001.CrossRefGoogle Scholar
  20. Smirnova, N., M. Hayakawa, and K. Gotoh (2004), Precursory behavior of fractal characteristics of the ULF electromagnetic fields in seismic active zones before strong earthquakes, Phys. Chem. Earth 29,4–9, 445–451, DOI: 10.1016/j.pce.2003.11.016.Google Scholar
  21. Sornette, A., and D. Sornette (1989), Self-organized criticality and earthquakes, Europhys. Lett. 9,3, 197–202, DOI: 10.1209/0295-5075/9/3/002.CrossRefGoogle Scholar
  22. Telesca, L., V. Lapenna, F. Vallianatos, J. Makris, and V. Saltas (2004), Multifractal features in short-term time dynamics of ULF geomagnetic field measured in Crete, Greece, Chaos Soliton. Fract. 21,2, 273–282, DOI: 10.1016/j.chaos.2003.10.020.CrossRefGoogle Scholar
  23. Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, Cambridge, 398 pp.Google Scholar
  24. Vallianatos, F., and A. Tzanis (1999b), On possible scaling laws between electric earthquake precursors (EEP) and earthquake magnitude, Geophys. Res. Lett., 26,13, 2013–2016, DOI: 10.1029/1999GL900406.CrossRefGoogle Scholar
  25. Vallianatos, F., V. Lapenna, V. Troyan, N. Smirnova, Yu. Kopytenko, V. Korepanov, and T. Matiashvili (2002), Study of the ULF electromagnetic phenomena related to earthquakes: Strategy of the SUPRE project. In: M. Hayakawa and O. Molchanov (eds.), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Proc. Int. Workshop on Seismo-Electromagnetics of NASDA 2000, TERRAPUB, Tokyo, 437–442.Google Scholar
  26. Vallianatos, F., J. Makris, V. Saltas, L. Telesca, and V. Lapenna (2004), Monofractal and multifractal analysis in short-term time dynamics of ULF geomagnetic field measured in Crete, Greece, Bull. Geol. Soc. Greece 36,3, 1298–1307, http://openarchives.gr/visit/105510.Google Scholar
  27. Yumoto, K., Y. Tanaka, T. Oguti, K. Shiokawa, Y. Yoshimura, A. Isono, B.J. Fraser, F.W. Menk, J.W. Lynn, M. Seto, and the 210 MM Magnetic Observation Group (1992), Globally coordinated magnetic observations along 210° magnetic meridian during STEP period: 1. Preliminary results of lowlatitude Pc 3’s, J. Geomag. Geoelectr. 44,4, 261–276, DOI: 10.5636/jgg.44.261.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Anton Varlamov
    • 1
  • Natalia Smirnova
    • 1
  • Masashi Hayakawa
    • 2
  • Kiyohumi Yumoto
    • 3
  1. 1.Institute of PhysicsSt. Petersburg UniversitySt. PetersburgRussia
  2. 2.University of Electro-CommunicationsChofu, TokyoJapan
  3. 3.Department of Earth and Planetary SciencesKyushu UniversityHakozaki, FukuokaJapan

Personalised recommendations