Acta Geophysica

, Volume 60, Issue 3, pp 959–984 | Cite as

Optimizing statistical classification accuracy of satellite remotely sensed imagery for supporting fast flood hydrological analysis

  • Dimitrios D. AlexakisEmail author
  • Athos Agapiou
  • Diofantos G. Hadjimitsis
  • Adrianos Retalis
Research Article


The aim of this study is to improve classification results of multispectral satellite imagery for supporting flood risk assessment analysis in a catchment area in Cyprus. For this purpose, precipitation and ground spectroradiometric data have been collected and analyzed with innovative statistical analysis methods. Samples of regolith and construction material were in situ collected and examined in the spectroscopy laboratory for their spectral response under consecutive different conditions of humidity. Moreover, reflectance values were extracted from the same targets using Landsat TM/ETM+ images, for drought and humid time periods, using archived meteorological data. The comparison of the results showed that spectral responses for all the specimens were less correlated in cases of substantial humidity, both in laboratory and satellite images. These results were validated with the application of different classification algorithms (ISODATA, maximum likelihood, object based, maximum entropy) to satellite images acquired during time period when precipitation phenomena had been recorded.

Key words

classification statistics spectroradiometer remote sensing floods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agapiou, A., D.G. Hadjimitsis, C. Papoutsa, D.D. Alexakis, and G. Papadavid (2011), The importance of accounting for atmospheric effects in the application of NDVI and interpretation of satellite imagery for supporting archaeological research: The case studies of Palaepaphos and Nea Paphos sites in Cyprus, Remote Sens. 3,12, 2605–2629; DOI: 10.3390/rs3122605.CrossRefGoogle Scholar
  2. Alexakis, D.D., D.G. Hadjimitsis, A. Agapiou, K. Themistokleous, and A. Retalis (2011), Contribution of earth observation to flood risk assessment in Cyprus: the Yialias catchment area in Nicosia. In: Proc. VI EWRA Int. Symp. “Water Engineering and Management in a Changing Environment”, 29 June–2 July 2011 Catania. Google Scholar
  3. Arai, K. (1991), Information extraction of inner pixel contents derived from satellite remote sensing imagery data, J. Jpn. Soc. Photogramm. Remote Sens. 30,4, 30–34.CrossRefGoogle Scholar
  4. Benz, U.C., P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen (2004), Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information, ISPRS J. Photogramm. Remote Sens. 58,3–4, 239–258, DOI: 10.1016/j.isprsjprs.2003.10.002.CrossRefGoogle Scholar
  5. Bhaskaran, S., S. Paramananda, and M. Ramnarayan (2010), Per-pixel and objectoriented classification methods for mapping urban features using Ikonos satellite data, Appl. Geogr. 30,4, 650–665, DOI: 10.1016/j.apgeog.2010.01.009.CrossRefGoogle Scholar
  6. Blaschke, T. (2010), Object based image analysis for remote sensing, ISPRS J. Photogramm. Remote Sens. 65,1, 2–16, DOI: 10.1016/j.isprsjprs.2009.06.004.CrossRefGoogle Scholar
  7. Blumberg, D.G., and G. Zhu (2007), Using a hierarchical multi-resolution mechanism for the classification and semantic extraction of land use maps for Beer-Sheva, Israel, Int. J. Remote Sens. 28,15, 3273–3289, DOI: 10.1080/01431160600993371.CrossRefGoogle Scholar
  8. Brown, D.G., B.C. Pijanowski, and J.D. Duh (2000), Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA, J. Environ. Manage. 59,4, 247–263, DOI: 10.1006/jema.2000.0369.CrossRefGoogle Scholar
  9. Congalton, R.G. (1991), A review of assessing the accuracy of classifications of remotely sensed data, Remote Sens. Environ. 37,1, 35–46, DOI: 10.1016/0034-4257(91)90048-B.CrossRefGoogle Scholar
  10. Congalton, R.G., and K. Green (1999), Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Lewis Publishers, Boca Raton, 137 pp.Google Scholar
  11. De Kok, R., A. Buck, T. Schneider, and U. Ammer (2000), Analysis of image objects fromVHR imagery for forest GIS updating in the Bavarian Alps. In: XIX Congress Int. Soc. for Photogrammetry and Remote Sensing (ISPRS), 16–23 July 2000, Amsterdam, Holland, 222–229.Google Scholar
  12. Du, P., X. Li, W. Cao, Y. Luo, and H. Zhang (2010), Monitoring urban land cover and vegetation change by multi-temporal remote sensing information, Mining Sci. Technol. 20,6, 922–932, DOI: 10.1016/S1674-5264.Google Scholar
  13. Eggleton, R.A. (ed.), (2001), The Regolith Glossary: Surficial Geology, Soils and Landscapes, CRC LEME, Canberra, Australia, Scholar
  14. Eiumnoh, A., and R.P. Shrestha (2000), Application of DEM data to Landsat image classification: Evaluation in a tropical wet-dry landscape of Thailand, Photogramm. Eng. Remote Sens. 66,3, 297–1304.Google Scholar
  15. Foody, G.M. (2002), Status of land cover classification accuracy assessment, Remote Sens. Environ. 80,1, 185–201, DOI: 10.1016/S0034-4257(01) 00295-4.CrossRefGoogle Scholar
  16. Forster, B.C. (1984), Derivation of atmospheric correction procedures for LANDSAT MSS with particular reference to urban data, Int. J. Remote Sens. 5,5, 799–817, DOI: 10.1080/01431168408948861.CrossRefGoogle Scholar
  17. Gamanya, R., P. De Maeyer, and M. De Dapper (2007), An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization, Expert Syst. Appl. 32,2, 616–624, DOI: 10.1016/j.eswa.2006.01.055.CrossRefGoogle Scholar
  18. Hadjimitsis, D.G. (2007), The use of satellite remote sensing and GIS for assisting flood risk assessment: a case study of the Agriokalamin Catchment area in Paphos-Cyprus, Proc. SPIE 6742, 67420Z, DOI: 10.1117/12.751855.CrossRefGoogle Scholar
  19. Hadjimitsis, D.G. (2010), Determination of urban growth in catchment areas in Cyprus using multi-temporal remotely sensed data: risk assessment study, Nat. Hazards Earth Syst. Sci. 10, 2235–2240, DOI: 10.5194/nhess-10-2235-2010.CrossRefGoogle Scholar
  20. Hadjimitsis, D.G., and C.R.I. Clayton (2008), The use of an improved atmospheric correction algorithm for removing atmospheric effects from remotely sensed images using an atmosphere-surface simulation and meteorological data, Meteorol. Appl. 15,3, 381–387, DOI: 10.1002/met.80.CrossRefGoogle Scholar
  21. Hadjimitsis, D.G., and C.R.I. Clayton (2007), The application of the covariance matrix statistical method for removing atmospheric effects from satellite remotely sensed data intended for environmental applications, Proc. SPIE 6749, 674936, DOI: 10.1117/12.751887.CrossRefGoogle Scholar
  22. Hadjimitsis, D.G., C.R.I. Clayton, and V.S. Hope (2004a), An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs, Int. J. Remote Sens. 25,18, 3651–3674, DOI: 10.1080/01431160310001647993.CrossRefGoogle Scholar
  23. Hadjimitsis, D.G., C.R.I. Clayton, and A. Retalis (2004b), On the darkest pixel atmospheric correction algorithm: a revised procedure applied over satellite remotely sensed images intended for environmental applications, Proc. SPIE 5239, 464, DOI: 10.1117/12.511520.CrossRefGoogle Scholar
  24. Hjuler, M.L., and I.L. Fabricius (2009), Engineering properties of chalk related to diagenetic variations of Upper Cretaceous onshore and offshore chalk in the North Sea area, J. Petrol. Sci. Eng. 68,3–4, 151–170, DOI: 10.1016/j.petrol.2009.06.005.CrossRefGoogle Scholar
  25. Jaynes, E.T. (1957), Information theory and statistical mechanics, Phys. Rev. 106,4, 620–630, DOI: 10.1103/PhysRev.106.620.CrossRefGoogle Scholar
  26. Karl, J.W., and B.A. Maurer (2010), Multivariate correlations between imagery and field measurements across scales: comparing pixel aggregation and image segmentation, Landscape Ecol. 25,4, 591–605, DOI: 10.1007/s10980-009-9439-4.CrossRefGoogle Scholar
  27. Li, W., and Q. Guo (2010), A maximum entropy approach to one-class classification of remote sensing imagery, Int. J. Remote Sens. 31,8, 2227–2235, DOI: 10.1080/01431161003702245.CrossRefGoogle Scholar
  28. Liberti, M., T. Simoniello, M.T. Carone, R. Coppola, M. D’Emilio, and M. Macchiato (2009), Mapping badland areas using LANDSAT TM/ETM satellite imagery and morphological data, Geomorphology 106,3–4, 333–343, DOI: 10.1016/j.geomorph.2008.11.012.CrossRefGoogle Scholar
  29. Matikainen, L., and K. Karila (2011), Segment-based land cover mapping of a suburban area-comparison of high-resolution remotely sensed datasets using classification trees and test field points, Remote Sens. 3,8, 1777–1804, DOI: 10.3390/rs3081777.CrossRefGoogle Scholar
  30. McLachlan, G.J. (1992), Discriminant Analysis and Statistical Pattern Recognition, John Wiley and Sons, New York.CrossRefGoogle Scholar
  31. Melgani, F., and S.B. Serpico (2002), A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remotesensing images, Pattern Recogn. Lett. 23,9, 1053–1061, DOI: 10.1016/S0167-8655(02)00052-1.CrossRefGoogle Scholar
  32. Michaelides, S.C., F.S. Tymvios, and T. Michaelidou (2009), Spatial and temporal characteristics of the annual rainfall frequency distribution in Cyprus, Atmos. Res. 94,4, 606–615, DOI: 10.1016/j.atmosres.2009.04.008.CrossRefGoogle Scholar
  33. Mortier, F., S. Robin, S. Lassalvy, C. Baril, and A. Bar-Hen (2006), Prediction of Euclidean distances with discrete and continuous outcomes, J. Multivariate Anal. 97,8, 1799–1814, DOI: 10.1016/j.jmva.2005.06.010.CrossRefGoogle Scholar
  34. Moussa, R., and C. Bocquillon (2009), On the use of the diffusive wave for modelling extreme flood events with overbank flow in the floodplain, J. Hydrol. 374,1-2, 116–135, DOI: 10.1016/j.jhydrol.2009.06.006.CrossRefGoogle Scholar
  35. Peterson, A.T., and J. Shaw (2003), Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects, Int. J. Parasitol. 33,9, 919–931, DOI: 10.1016/S0020-7519(03)00094-8.CrossRefGoogle Scholar
  36. Phillips, S.J., M. Dudík, and R.E. Schapire (2004), A maximum entropy approach to species distribution modeling. In: Proc. Twenty-First Int. Conf. on Machine Learning, Banff, Alberta, Canada, ACM, New York, 655–662, DOI: 10.1145/1015330.1015412.Google Scholar
  37. Phillips, S.J., R.P. Anderson, and R.E. Schapire (2006), Maximum entropy modeling of species geographic distributions, Ecol. Model. 190,3–4, 231–259, DOI: 10.1016/j.ecolmodel.2005.03.026.CrossRefGoogle Scholar
  38. Risnes, R., H. Haghighi, R.I. Korsnes, and O. Natvik (2003), Chalk-fluid interactions with glycol and brines, Tectonophysics 370,1–4, 213–226, DOI: 10.1016/S0040-1951(03)00187-2.CrossRefGoogle Scholar
  39. Risnes, R., M.V. Madland, M. Hole, and N.K. Kwabiah (2005), Water weakening of chalk — Mechanical effects of water-glycol mixtures, J. Petrol. Sci. Eng. 48,1–2, 21–36, DOI: 10.1016/j.petrol.2005.04.004.CrossRefGoogle Scholar
  40. Roosta, H., R. Farhoudi, and M. Roosta (2007), Multi temporal disaggregation of MODIS images using non-linear analysis. In: Proc. of 5th WSEAS Int. Conf. on Environment, Ecosystems and Development, 14–16 December2007, Tenerife, Spain, 222–227.Google Scholar
  41. Shafique, M., M. Van der Meijde, and S. Ullah (2011), Regolith modeling and its relation to earthquake induced building damage: A remote sensing approach, J. Asian Earth Sci. 42,1–2, 65–75, DOI: 10.1016/j.jseaes.2011.04.004.CrossRefGoogle Scholar
  42. Shankar, B.U., S.K. Meher, and A. Ghosh (2011), Wavelet-fuzzy hybridization: Feature-extraction and land-cover classification of remote sensing images, Appl. Soft Comput. 11,3, 2999–3011, DOI: 10.1016/j.asoc.2010.11.024.CrossRefGoogle Scholar
  43. Shannon, C.E. (1948), A mathematical theory of communication, Bell Syst. Tech. J. 27, 379–423.Google Scholar
  44. Takagi, T., T. Oguchi, J. Matsumoto, M.J. Grossman, M.H. Sarker, and M.A. Matin (2007), Channel braiding and stability of the Brahmaputra River, Bangladesh, since 1967: GIS and remote sensing analyses, Geomorphology 85,3–4, 294–305, DOI: 10.1016/j.geomorph.2006.03.028.CrossRefGoogle Scholar
  45. Van Vliet, J. (2009), Assessing the accuracy of changes in spatial explicit land use change models. In: 12th Annual AGILE Int. Conf. on Geographic Information Science 2009, Leibniz Universitat Hannover, Germany.Google Scholar
  46. Van Vliet, J., A.K. Bregt, and A. Hagen-Zanker (2011), Revisiting Kappa to account for change in the accuracy assessment of land-use change models, Ecol. Model. 222,8, 1367–1375, DOI: 10.1016/j.ecolmodel.2011.01.017.CrossRefGoogle Scholar
  47. Weng, Q. (2002), Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling, J. Environ. Manage. 64,3, 273–284, DOI: 10.1006/jema.2001.0509.CrossRefGoogle Scholar
  48. Wu, X., J.T. Sullivan, and A.K. Heidinger (2010), Operational calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible and near-infrared channels, Can. J. Remote Sens. 36,5, 602–616, DOI: 10.5589/m10-080.CrossRefGoogle Scholar
  49. Yang, C., J.H. Everitt, and D. Murden (2011), Evaluating high resolution SPOT 5 satellite imagery for crop identification, Comput. Electron. Agr. 75,2, 347–354, DOI: 10.1016/j.compag.2010.12.012.CrossRefGoogle Scholar
  50. Zhang, R., and D. Zhu (2011), Study of land cover classification based on knowledge rules using high-resolution remote sensing images, Expert Syst. Appl. 38,4, 3647–3652, DOI: 10.1016/j.eswa.2010.00.019.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Dimitrios D. Alexakis
    • 1
    Email author
  • Athos Agapiou
    • 1
  • Diofantos G. Hadjimitsis
    • 1
  • Adrianos Retalis
    • 2
  1. 1.Department of Civil Engineering and Geomatics, Remote Sensing Lab., Faculty of Engineering and TechnologyCyprus University of TechnologyLimassolCyprus
  2. 2.National Observatory of AthensInstitute for Environmental Research and Sustainable DevelopmentAthensGreece

Personalised recommendations