Acta Geophysica

, Volume 58, Issue 5, pp 947–956 | Cite as

Measurement of radon potential from soil using a special method of sampling

  • Constantin Cosma
  • Botond Papp
  • Mircea Moldovan
  • Victor Cosma
  • Ciprian Cindea
  • Liviu Suciu
  • Adelina Apostu
Article

Abstract

Soil radon gas and/or its exhalation rate are used as indicators for some applications, such as uranium exploration, indoor radon concentration, seismic activity, location of subsurface faults, etc., and also in the studies where the main interest is the field verification of radon transport models. This work proposes a versatile method for the soil radon sampling using a special manner of pumping. The soil gas is passed through a column of charcoal by using passive pumping. A plastic bottle filled with water is coupled to an activated charcoal column and the flow of water through an adjustable hole made at the bottom of bottle assures a controlled gas flow from the soil. The results obtained for the activity of activated charcoal are in the range of 20–40 kBq/m3, for a depth of approximately 0.8 m. The results obtained by this method were confirmed by simultaneous measurements using LUK 3C device for soil radon measurements. Possible applications for the estimation of radon soil potential are discussed.

Key words

radon radon soil potential activated charcoal gas extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cosma, C., D. Ristoiu, O. Cozar, V. Znamirovschi, L. Daraban, S. Ramboiu, and I. Chereji (1996a), Studies on the occurrence of radon in selected sites of Romania, Environ. Int. 22, 61–65, DOI: 10.1016/S0160-4120(96)00090-6.CrossRefGoogle Scholar
  2. Cosma, C., D. Ristoiu, A. Poffijn, and G. Meesen (1996b), Radon in various environmental samples in the Herculane Spa, Cerna Valley, Romania, Environ. Int. 22, 383–388, DOI: 10.1016/S0160-4120(96)00136-5.Google Scholar
  3. Cosma, C., M. Moldovan, T. Dicu, and T. Kovács (2008), Radon in water from Transylvania (Romania), Radiat. Meas. 43, 8, 1423–1428, DOI: 10.1016/j.radmeas.2008.05.001.CrossRefGoogle Scholar
  4. Darby, S., E. Whitley, P. Silcocks, B. Thakrar, M. Green, P. Lomas, J. Miles, G. Reeves, T. Fearn, and R. Doll (1998), Risk of lung cancer associated with residential radon exposure in south-west England: a case-control study, Br. J. Cancer 78, 3, 394–408.CrossRefGoogle Scholar
  5. Elmaghraby, E.K., and Y.A. Lotfy (2009), Differentiation between earthquake radon anomalies and those arising from nuclear activities, Appl. Radiat. Isotopes 67, 1, 208–211, DOI: 10.1016/j.apradiso.2008.07.003.CrossRefGoogle Scholar
  6. Gorjánácz, Z., A. Várhegyi, T. Kovács, and J. Somlai (2006), Population dose in the vicinity of closed Hungarian uranium mine, Radiat. Prot. Dosim. 118, 4, 448–452, DOI: 10.1093/rpd/nci363.CrossRefGoogle Scholar
  7. Hámori, K., E. Tóth, A. Losonci, and M. Minda (2006), Some remarks on the indoor radon distribution in a country, Appl. Radiat. Isotopes 64, 8, 859–863, DOI: 10.1016/j.apradiso.2006.02.098.CrossRefGoogle Scholar
  8. Igarashi, G., S. Saeki, N. Takahata, K. Sumikawa, S. Tasaka, Y. Sasaki, M. Takahashi, and Y. Sano (1995), Ground-water radon anomaly before the Kobe earthquake in Japan, Science 269, 5220, 60–61, DOI: 10.1126/science.269.5220.60.CrossRefGoogle Scholar
  9. Killip, I.R. (2005), Radon hazard and risk in Sussex, England and the factors affecting radon levels in dwellings in chalk terrain, Radiat. Prot. Dosim. 113, 1, 99–107, DOI: 10.1093/rpd/nch436.CrossRefGoogle Scholar
  10. Moldovan, M., C. Cosma, I. Encian, and T. Dicu (2009), Radium-226 concentration in Romanian bottled mineral waters, J. Radioanal. Nucl. Chem. 279, 2, 487–491, DOI: 10.1007/s10967-007-7326-0.CrossRefGoogle Scholar
  11. Nazaroff, W.W., B.A. Moed, and R.G. Sextro (1988), Soil as a source of indoor radon: Generation, migration and entry. In: W.W. Nazaroff and A.V. Nero (eds.), Radon and its Decay Products in Indoor Air, John Wiley and Sons Inc., New York, 55–112.Google Scholar
  12. Neznal, M., and M. Neznal (2005), Permeability as an important parameter for radon risk classification of foundation soils, Ann. Geophys. 48, 1, 175–180.Google Scholar
  13. Neznal, M., M. Neznal, M. Matolín, I. Barnet, and J. Miksova (2004), The new method for assessing the radon risk of building sites, Czech. Geol. Survey, Special Papers 47.Google Scholar
  14. NRPB (1993), National Radiation Maps of Western Europe, National Radiological Protection Board, Chilton, Didcot, Oxon.Google Scholar
  15. Plch, J. (1997), Manual for Operating LUK 3C Device, Jiri Plch, M. Eng. SMM, Prague.Google Scholar
  16. Sainz, C., A. Dinu, T. Dicu, K. Szacsvai, C. Cosma, and L.S. Quindós (2009), Comparative risk assessment of residential radon exposures in two radon-prone areas, Ştei (Romania) and Torrelodones (Spain), Sci. Total Environ. 407, 15, 4452–4460, DOI: 10.1016/j.scitotenv.2009.04.033.CrossRefGoogle Scholar
  17. Stranden, E., and A.K. Kolstad (1985), Radon exhalation from the ground; Method of measurements and preliminary results, Sci. Total Environ. 45, 165–171, DOI: 10.1016/0048-9697(85)90217-7.CrossRefGoogle Scholar
  18. Tanner, A.B. (1980), Radon migration in the ground, a supplementary review. In: T.F. Gesell and W.M. Lowder (eds.), Natural Radiation Environment III, National Techn. Inform. Service, CONF-780422, Springfield, VA, 5–56.Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Constantin Cosma
    • 1
  • Botond Papp
    • 1
  • Mircea Moldovan
    • 1
  • Victor Cosma
    • 1
  • Ciprian Cindea
    • 2
  • Liviu Suciu
    • 3
  • Adelina Apostu
    • 4
  1. 1.Faculty of Environmental ScienceUniversity Babes-BolyaiCluj-NapocaRomania
  2. 2.Institute of Public HealthCluj-NapocaRomania
  3. 3.ICPE Bistrita S.A.BistritaRomania
  4. 4.Technical University of Civil Engineering of BucharestBucharestRomania

Personalised recommendations