Advertisement

Acta Geophysica

, Volume 59, Issue 1, pp 55–71 | Cite as

The spatial and temporal distribution of marine geophysical surveys

  • Paul Wessel
  • Michael T. Chandler
Article

Abstract

We examine how bathymetric mapping coverage varies with distance from the coastline, here a proxy for the effort involved in collecting the data. Distances to the nearest coastline were evaluated on a 1′ × 1′ global grid. We evaluate the density of marine survey track lines, which falls off with increasing distance from the coastline and drops off precipitously for the most remote regions. Bathymetric coverage shows a marked asymmetry between the southern and northern hemispheres, the latter having a factor of 2–4 denser coverage. We find a rapid decrease in data acquisition for previously unexplored regions beginning in 1973–1975. This rate change may reflect a transition from serendipitous exploration to more targeted investigations as the plate tectonics hypothesis became accepted, but it could also reflect the 1970s oil shocks. Coverage of the seafloor varies logarithmically with mapping resolution. At 0.5° resolution, only ∼60% of the seafloor has been mapped; the 50% mark was reached in 1979 and coverage of unexplored seafloor has since been less rapid. For comparison, at 1′ resolution less than 10% of the seafloor has been mapped. Given rising fuel costs we predict the most remote areas will see a decline in future surveys. Better coordination of exploration among agencies and nations could mitigate this concern and improve global coverage, as could future altimetric mapping dedicated to bathymetric prediction.

Key words

bathymetry marine surveys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADD Consortium (2000), Antarctic Digital Database, Version 4.1. Database, Manual and Bibliography, Scientific Committee on Antarctic Research, Cambridge, UK, 93 pp.Google Scholar
  2. Becker, J.J., D.T. Sandwell, W.H.F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J. Factor, S. Ingalls, S.-H. Kim, R. Ladner, K. Marks, S. Nelson, A. Pharaoh, R. Trimmer, J. Von Rosenberg, G. Wallace, and P. Weatherall (2009), Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS, Marine Geodesy 32, 4, 355–371, DOI: 10.1080/01490410903297766.CrossRefGoogle Scholar
  3. Chandler, M.T., and P. Wessel (2008), Improving the quality of marine geophysical track line data: Along-track analysis, J. Geophys. Res. 113, B02102, DOI: 10.1029/2007JB005051.CrossRefGoogle Scholar
  4. Corfield, R. (2003), The Silent Landscape: The Scientific Voyage of HMS Challenger, Joseph Henry Press, London, 285 pp.Google Scholar
  5. Dalton, R. (2009), Sonar mapping ventures into uncharted waters, Nature 458, 7238, 557, DOI: 10.1038/458557a.CrossRefGoogle Scholar
  6. Gross, M.G. (1987), Oceanography: A View of the Earth, Prentice-Hall Inc., Englewood Cliffs, NJ, 406 pp.Google Scholar
  7. Heezen, B.C. (1960), The rift in the ocean floor, Sci. Am. 203, 4, 98–110, DOI: 10.1038/scientificamerican1060-98.CrossRefGoogle Scholar
  8. Hess, H.H. (1946), Drowned ancient islands of the Pacific Basin, Am. J. Sci. 244, 772–791.CrossRefGoogle Scholar
  9. Hey, R. (1977), A new class of “pseudofaults” and their bearing on plate tectonics: A propagating rift model, Earth Planet. Sci. Lett. 37, 2, 321–325, DOI: 10.1016/0012-821X(77)90177-7.CrossRefGoogle Scholar
  10. Mammerickx, J. (1992), The Foundation Seamounts: Tectonic setting of a newly discovered seamount chain in the South Pacific, Earth Planet. Sci. Lett. 113, 3, 293–306, DOI: 10.1016/0012-821X(92)90135-I.CrossRefGoogle Scholar
  11. Marks, K.M., D.C. McAdoo, and D.T. Sandwell (1991), Geosat GM data reveal new details of ocean floor, Eos Trans. AGU 72, 13, 145, DOI: 10.1029/90EO00107.CrossRefGoogle Scholar
  12. Menard, H.W. (1964), Marine Geology of the Pacific, McGraw-Hill, New York, 271 pp.Google Scholar
  13. Oliver, J. (1996), Shocks and Rocks: Seismology in the Plate Tectonic Revolution: The Story of Earthquakes and the Great Earth Science Revolution of the 1960s, American Geophysical Union, Washington, D.C., 139 pp.Google Scholar
  14. Oreskes, N. (ed.) (2002), Plate Tectonics: An Insider’s History of the Modern Theory of the Earth, Westview Press, Oxford, 448 pp.Google Scholar
  15. Raff, A.D., and R.G. Mason (1961), Magnetic survey off the west coast of North America, 40°N. latitude to 52.5°N. latitude, Geol. Soc. Am. Bull. 72, 8, 1267–1270, DOI: 10.1130/0016-7606(1961)72[1267:MSOTWC]2.0.CO;2.CrossRefGoogle Scholar
  16. Renka, R.J. (1997), Algorithm 772: STRIPACK: Delauney triangulation and Voronoi diagram on the surface of a sphere, ACM Trans. Math. Software 23, 3, 416–434, DOI: 10.1145/275323.275329.CrossRefGoogle Scholar
  17. Ryan, W.B.F., S.M. Carbotte, J.O. Coplan, S. O’Hara, A. Melkonian, R. Arko, R.A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, J. Bonczkowski, and R. Zemsky (2009), Global Multi-Resolution Topography synthesis, Geochem. Geophys. Geosyst. 10, 3, Q03014,: doi:10.1029/2008GC002332.CrossRefGoogle Scholar
  18. Sandwell, D.T., and W.H.F. Smith (2009), Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate, J. Geophys. Res. 114, B01411, DOI: 10.1029/2008JB006008.CrossRefGoogle Scholar
  19. Sandwell, D.T., and P. Wessel (2010), Box 3: Seamount discovery tool aids navigation to uncharted seafloor features, Oceanography 23, 1, 34–36.Google Scholar
  20. Smith, D.E., M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, and X. Sun (2001), Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars, J. Geophys. Res. 106, E10, 23689–23722, DOI: 10.1029/2000JE001364.CrossRefGoogle Scholar
  21. Smith, W.H.F. (1993), On the accuracy of digital bathymetric data, J. Geophys. Res. 98, B6, 9591–9603, DOI: 10.1029/93JB00716.CrossRefGoogle Scholar
  22. Smith, W.H.F. (1998), Seafloor tectonic fabric from satellite altimetry, Ann. Rev. Earth Planet. Sci. 26, 697–747, DOI: 10.1146/annurev.earth.26.1.697.CrossRefGoogle Scholar
  23. Smith, W.H.F., and, D.T. Sandwell (1994), Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry, J. Geophys. Res. 99, B11, 21803–21824, DOI: 10.1029/94JB00988.CrossRefGoogle Scholar
  24. Smith, W.H.F., and D.T. Sandwell (1997), Global sea floor topography from satellite altimetry and ship depth soundings, Science 277, 5334, 1956–1962, DOI: 10.1126/science.277.5334.1956.CrossRefGoogle Scholar
  25. Soluri, E.A., and V.A. Woodson (1990), World vector shoreline, Int. Hydrograph. Rev. 67, 1, 27–35.Google Scholar
  26. Vogt, P.R., W.-Y. Jung, and D.J. Nagel (2000), GOMaP: A matchless resolution to start the new millennium, Eos Trans. AGU 81, 23, 254–258, DOI: 10.1029/00EO00180.CrossRefGoogle Scholar
  27. Wessel, P., and M.T. Chandler (2007), The mgd77 supplement to the generic mapping tools, Computers & Geosciences 33, 1, 62–75, DOI: 10.1016/j.cageo.2006.05.006.CrossRefGoogle Scholar
  28. Wessel, P., and W.H.F. Smith (1996), A global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res. 101, B4, 8741–8743, DOI: 10.1029/96JB00104.CrossRefGoogle Scholar
  29. Wessel, P., and W.H.F. Smith (1998), New, improved version of Generic Mapping Tools released, Eos Trans. AGU 79, 47, 579.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  1. 1.Department of Geology and Geophysics, School of Ocean and Earth Science and TechnologyUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations