Acta Geophysica

, Volume 59, Issue 1, pp 183–204 | Cite as

Estimation of global lightning activity and observations of atmospheric electric field

  • Marek Gołkowski
  • Marek Kubicki
  • Morris Cohen
  • Andrzej Kułak
  • Umran S. Inan


Variations in the global atmospheric electric circuit are investigated using a wide range of globally spaced instruments observing VLF (∼10 kHz) waves, ELF (∼300 Hz) waves, Schumann resonances (4–60 Hz), and the atmospheric fair weather electric field. For the ELF/VLF observations, propagation effects are accounted for in a novel approach using established monthly averages of lightning location provided by the Lightning Image Sensor (LIS) and applying known frequency specific attenuation parameters for daytime/nighttime ELF/VLF propagation. Schumann resonances are analyzed using decomposition into propagating and standing waves in the Earth-ionosphere waveguide. Derived lightning activity is compared to existing global lightning detection networks and fair weather field observations. The results suggest that characteristics of lightning discharges vary by region and may have diverse effects upon the ionospheric potential.

Key words

global electric circuit lightning discharges ELF/VLF waves Schumann resonances 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biswas, K.R., and P.V. Hobbs (1990), Lightning over the Gulf Stream, Geophys. Res. Lett. 17, 7, 941–943, DOI: 10.1029/GL017i007p00941.CrossRefGoogle Scholar
  2. Boccippio, D.J., S.J. Goodman, S. Heckman (2000), Regional differences in tropical lightning distributions, J. Appl. Meteorol. 39, 12, 2231–2248, DOI: 10.1175/1520-0450(2001)040〈2231:RDITLD〉2.0.CO;2.CrossRefGoogle Scholar
  3. Chalmers, J.A., (1967), Atmospheric Electricity, 2nd ed., Pergamon Press, Oxford - New York, 515 pp.Google Scholar
  4. Chen, A.B., C.-L. Kuo, Y.-J. Lee, H.-T. Su, R.-R. Hsu, J.-L. Chern, H.U. Frey, S.B. Mende, Y. Takahashi, H. Fukunishi, Y.-S. Chang, T.-Y. Liu, and L.-C. Lee (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res. 113, A08306, DOI: 10.1029/2008JA013101.CrossRefGoogle Scholar
  5. Christian, H.J., R.J. Blakeslee, D.J. Boccippio, W.L. Boeck, D.E. Buechler, K.T. Driscoll, S.J. Goodman, J.M. Hall, W.J. Koshak, D.M. Mach, and M.F. Stewart (2003), Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res. 108, D1, 4005, DOI: 10.1029/2002JD002347.CrossRefGoogle Scholar
  6. Cohen, M.B., U.S. Inan, and E. Paschal (2009), Sensitive broadband ELF/VLF radio reception with the AWESOME instrument, IEEE Trans. Geosci. Remote Sens. 48, 1, 3–17, DOI: 10.1109/TGRS.2009.2028334.CrossRefGoogle Scholar
  7. Dowden, R.L, J.B. Brundell, and C.J. Rodger (2002), VLF lightning location by time of group arrival (TOGA) at multiple sites, J. Atmos. Sol.-Terr. Phys. 64, 7, 817–830, DOI: 10.1016/S1364-6826(02)00085-8.CrossRefGoogle Scholar
  8. Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U.S. Inan, and W.A. Lyons (1996), Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett. 23, 16, 2157–2160, DOI: 10.1029/96GL01979.CrossRefGoogle Scholar
  9. Füllekrug, M., and A.C. Fraser-Smith (1996), Further evidence for a global correlation of the Earth-ionosphere cavity resonances, Geophys. Res. Lett. 23, 20, 2773–2776, DOI: 10.1029/96GL02612.CrossRefGoogle Scholar
  10. Füllekrug, M., A.C. Fraser-Smith, E.A. Bering, and A.A. Few (1999), On the hourly contribution of global cloud-to-ground lightning activity to the atmospheric electric field in the Antarctic during December 1992, J. Atmos. Sol.-Terr. Phys. 61, 10, 745–750, DOI: 10.1016/S1364-6826(99)00031-0.CrossRefGoogle Scholar
  11. Füllekrug, M., C. Price, Y. Yair, and E.R. Williams (2002), Intense oceanic lightning, Ann. Geophys. 20, 1, 133–137, DOI: 10.5194/angeo-20-133-2002.CrossRefGoogle Scholar
  12. Kartalev, M.D., M.J. Rycroft, M. Füllekrug, V.O. Papitashvili, and V.I. Keremidarska (2006), A possible explanation for the dominant effect of South American thunderstorms on the Carnegie curve, J. Atmos. Sol.-Terr. Phys. 68, 3–5, 457–468, DOI: 10.1016/j.jastp.2005.05.012.CrossRefGoogle Scholar
  13. Kubicki, M. (2008), Atmospheric electricity research at the Institute of Geophysics in the years 2006–2007, Publs. Inst. Geophys. Pol. Acad. Sc. D-72, 403, 105–110.Google Scholar
  14. Kubicki, M., S. Michnowski, and B. Mysłek-Laurikainen (2007), Seasonal and daily variations of atmospheric electricity parameters registered at the Geophysical Observatory at Świder (Poland) during 1965–2000, Proc. 13th Int. Confer. on Atmospheric Electricity, ICAE 2007, Beijing, 50–54.Google Scholar
  15. Kułak, A., J. Młynarczyk, S. Zięba, S. Micek, and Z. Nieckarz (2006), Studies of ELF propagation in the spherical shell cavity using a field decomposition method based on asymmetry of Schumann resonance curves, J. Geophys. Res. 111, A10304, DOI: 10.1029/2005JA01142.CrossRefGoogle Scholar
  16. Lay, E.H., R.H. Holzworth, C.J. Rodger, J.N. Thomas, O. Pinto Jr., and R.L. Dowden (2004), WWLL global lightning detection system: Regional validation study in Brazil, Geophys. Res. Lett. 31, L03102, DOI: 10.1029/2003GL018882.CrossRefGoogle Scholar
  17. Michnowski, S. (1998), Solar wind influences on atmospheric electricity variables in polar regions, J. Geophys. Res. 103, D12, 13939–13948, DOI: 10.1029/98JD01312.CrossRefGoogle Scholar
  18. Nieckarz, Z., A. Kułak, S. Zięba, M. Kubicki, S. Michnowski, and P. Barański (2009), Comparison of global storm activity rate calculated from Schumann resonance background components to electric field intensity E0Z, Atmos. Res. 91, 2–4, 184–187, DOI: 10.1016/j.atmosres.2008.06.006.CrossRefGoogle Scholar
  19. Pasko, V.P., U.S. Inan, and T.F. Bell (1997), Sprites as evidence of vertical gravity wave structures above mesoscale thunderstorms, Geophys. Res. Lett. 24, 14, 1735–1738, DOI: 10.1029/97GL01607.CrossRefGoogle Scholar
  20. Rodger, C.J., J.B. Brundell, and R.L. Dowden (2005), Location accuracy of VLF World-Wide Lightning Location (WWLL) network: Post-algorithm upgrade, Ann. Geophys. 23, 2, 277–290, DOI: 10.5194/angeo-23-277-2005.CrossRefGoogle Scholar
  21. Rodger, C.J., S. Werner, J.B. Brundell, E.H. Lay, N.R. Thomson, R.H. Holzworth, and R.L. Dowden (2006), Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study, Ann. Geophys. 24, 12, 3197–3214, DOI: 10.5194/angeo-24-3197-2006.CrossRefGoogle Scholar
  22. Rycroft, M.J., S. Israelsson, and C. Price (2000), The global atmospheric electric circuit, solar activity and climate change, J. Atmos. Sol.-Terr. Phys. 62, 17–18, 1563–1576, DOI: 10.1016/S1364-6826(00)00112-7.CrossRefGoogle Scholar
  23. Rycroft, M.J., A. Odzimek, N.F. Arnold, M. Füllekrug, A. Kułak, and T. Neubert (2007), New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites, J. Atmos. Sol.-Terr. Phys. 69, 17–18, 2485–2509, DOI: 10.1016/j.jastp.2007.09.004.CrossRefGoogle Scholar
  24. Scherrer, D., M.B. Cohen, T. Hoeksema, U.S. Inan, R. Mitchell, and P. Scherrer (2008), Distributing space weather monitoring instruments and educational materials worldwide for IHY 2007: The AWESOME and SID project, Adv. Space Res. 42, 11, 1777–1785, DOI: 10.1016/j.asr.2007.12.013.CrossRefGoogle Scholar
  25. Tinsley, B.A., and L. Zhou (2006), Initial results of a global circuit model with variable stratospheric and tropospheric aerosols, J. Geophys. Res. 11, D16205, DOI: 10.1029/2005JD006988.CrossRefGoogle Scholar
  26. Troshichev, O.A., A. Frank-Kamenetsky, G. Burns, M. Füllekrug, A. Rodger, and V. Morozov (2004), The relationship between variations of the atmospheric electric field in the southern polar region and thunderstorm activity, Adv. Space Res. 34, 8, 1801–1805, DOI: 10.1016/j.asr.2003.07.063.CrossRefGoogle Scholar
  27. Wait, J.R. (1981), Lectures on Wave Propagation Theory, Pergamon Press, New York.Google Scholar
  28. Watt, A.D. (1967), VLF Radio Engineering, Pergamon Press, New York.Google Scholar
  29. Whipple, F.J.W., and F.J. Scrase (1936), Point discharge in the electric field of the earth, Geophysical Memoirs of London VII 68, 1–20.Google Scholar
  30. Williams, E.R. (2009), The global electric circuit: A review, Atmos. Res. 91, 2–4, 140–152, DOI: 10.1016/j.atmosres.2008.05.018.CrossRefGoogle Scholar
  31. Williams, E.R., and G. Sátori (2004), Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys, J. Atmos. Sol.-Terr. Phys. 66, 13–14, 1213–1231, DOI: 10.1016/j.jastp.2004.05.015.CrossRefGoogle Scholar
  32. Wilson, C.T.R. (1921), Investigations on lightning discharges and on the electric field of thunderstorms, Philos. Trans. Roy. Soc. Lond. A 221, 73–115.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Marek Gołkowski
    • 1
  • Marek Kubicki
    • 2
  • Morris Cohen
    • 3
  • Andrzej Kułak
    • 4
    • 5
  • Umran S. Inan
    • 3
    • 6
  1. 1.Department of Electrical EngineeringUniversity of Colorado DenverDenverUSA
  2. 2.Institute of GeophysicsPolish Academy of SciencesWarszawaPoland
  3. 3.Department of Electrical EngineeringStanford UniversityStanfordUSA
  4. 4.Astronomical ObservatoryJagiellonian UniversityKrakówPoland
  5. 5.Department of ElectronicsAcademy of Mining and MetallurgyKrakówPoland
  6. 6.Department of Electrical EngineeringKoç University SariyerIstanbulTurkey

Personalised recommendations