Acta Geophysica

, Volume 58, Issue 6, pp 995–1020 | Cite as

Microseismicity induced during fluid-injection: A case study from the geothermal site at Groß Schönebeck, North German Basin

  • Grzegorz Kwiatek
  • Marco Bohnhoff
  • Georg Dresen
  • Ali Schulze
  • Thomas Schulte
  • Günter Zimmermann
  • Ernst Huenges


The technical feasibility of geothermal power production in a low enthalpy environment will be investigated in the geothermal site at Groß Schönebeck, North German Basin, where a borehole doublet was completed in 2007. In order to complete the Enhanced Geothermal System, three massive hydraulic stimulations were performed. A seismic network was deployed including a single 3-component downhole seismic sensor at only 500 m distance to the injection point. Injection rates reached up to 9 m3/min and the maximum injection well-head pressure was as high as ∼60 MPa. A total of 80 very small (−1.8 < M W < −1.0) induced seismic events were detected. The hypocenters were determined for 29 events. The events show a strong spatial and temporal clustering and a maximum seismicity rate of 22 events per day. Spectral parameters were estimated from the downhole seismometer and related to those from other types of induced seismicity. The majority of events occurred towards the end of stimulation phases indicating a similar behavior as observed at similar treatments in crystalline environments but in our case at a smaller level of seismic activity and at lower magnitudes.

Key words

induced seismicity spectral analysis hydraulic stimulation enhanced geothermal systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albright, J.N., and C.F. Pearson (1982), Acoustic emissions as a tool for hydraulic fracture location: Experience at the Fenton Hill hot dry rock site, SPE J. 22, 4, 523–530.Google Scholar
  2. Andrews, D.J. (1986), Objective determination of source parameters and similarity of earthquakes of different size. In: S. Das, J. Boatwright, and C.H. Scholz (eds.), Earthquake Source Mechanics, American Geophysical Union, Washington, DC, 259–268.Google Scholar
  3. Baisch, S., and H.-P. Harjes (2003), A model for fluid-injection-induced seismicity at the KTB, Germany, Geophys. J. Int. 152, 1, 160–170, DOI: 10.1046/j.1365-246X.2003.01837.x.CrossRefGoogle Scholar
  4. Baisch, S., M. Bohnhoff, L. Ceranna, Y. Tu, and H.-P. Harjes (2002), Probing the crust to 9-km depth: Fluid-injection experiments and induced seismicity at the KTB super deep drilling hole, Germany, Bull. Seism. Soc. Am. 92, 6, 2369–2380, DOI: 10.1785/0120010236.CrossRefGoogle Scholar
  5. Boatwright, J., and J.B. Fletcher (1984), The partition of radiated energy between P and S waves, Bull. Seism. Soc. Am. 74, 2, 361–376.Google Scholar
  6. Bohnhoff, M., S. Baisch, and H.-P. Harjes (2004), Fault mechanisms of induced seismicity at the superdeep German Continental Deep Drilling Program (KTB) borehole and their relation to fault structure and stress field, J. Geophys. Res. 109, B02309, DOI: 10.1029/2003JB002528.CrossRefGoogle Scholar
  7. Boore, D.M., and J. Boatwright (1984), Average body-wave radiation coefficients, Bull. Seism. Soc. Am. 74, 5, 1615–1621.Google Scholar
  8. Bourouis, S., and P. Bernard (2007), Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients, Geophys. J. Int. 169, 2, 723–732, DOI: 10.1111/j.1365-246X.2006.03325.x.CrossRefGoogle Scholar
  9. Brune, J.N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 26, 4997–5009, DOI: 10.1029/JB075i026 p04997; Correction, J. Geophys. Res. 76, (1971), 20, 5002, DOI: 10.1029/JB076i020p05002.CrossRefGoogle Scholar
  10. Charléty, J., N. Cuenot, L. Dorbath, C. Dorbath, H. Haessler, and M. Frogneux (2007), Large earthquakes during hydraulic stimulations at the geothermal site of Soultz-sous-Forêts, Int. J. Rock Mech. Min. Sci. 44, 8, 1091–1105, DOI: 10.1016/j.ijrmms.2007.06.003.CrossRefGoogle Scholar
  11. Cuenot, N., J. Charléty, L. Dorbath, and H. Haessler (2006), Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forêts, France, Geothermics 35, 5–6, 561–575, DOI: 10.1016/j.geothermics.2006.11.007.CrossRefGoogle Scholar
  12. Darnet, M., G. Marquis, and P. Sailhac (2006), Hydraulic stimulation of geothermal reservoirs: fluid flow, electric potential and microseismicity relationships, Geophys. J. Int. 166, 1, 438–444, DOI: 10.1111/j.1365-246X.2006.03026.x.CrossRefGoogle Scholar
  13. Di Bona, M., and A. Rovelli (1988), Effects of the bandwidth limitation on stress drops estimated from integrals of the ground motion, Bull. Seism. Soc. Am. 78, 5, 1818–1825.Google Scholar
  14. Evans, K.F., H. Moriya, H. Niitsuma, R.H. Jones, W.S. Phillips, A. Genter, J. Sausse, R. Jung, and R. Baria (2005), Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site, Geophys. J. Int. 160, 388–412, DOI: 10.1111/j.1365-246X.2004.02474.x.Google Scholar
  15. Gibowicz, S.J., and A. Kijko (1994), An Introduction to Mining Seismology, Academic Press, San Diego.Google Scholar
  16. Gibowicz, S.J., R.P. Young, S. Talebi, and D.J. Rawlence (1991), Source parameters of seismic events at the Underground Research Laboratory in Manitoba, Canada: Scaling relations for events with moment magnitude smaller than −2, Bull. Seism. Soc. Am. 81, 4, 1157–1182.Google Scholar
  17. Hanks, T.C., and H. Kanamori (1979), A moment magnitude scale, J. Geophys. Res. 84, B5, 2348–2350, DOI: 10.1029/JB084iB05p02348.CrossRefGoogle Scholar
  18. Hartzell, S.H. (1978), Earthquake aftershocks as Green’s functions, Geophys. Res. Lett. 5, 1, 1–4, DOI: 10.1029/GL005i001p00001.CrossRefGoogle Scholar
  19. Ide, S., and G.C. Beroza (2001), Does apparent stress vary with earthquake size? Geophys. Res. Lett. 28, 17, 3349–3352, DOI: 10.1029/2001GL013106.CrossRefGoogle Scholar
  20. Jahr, T., G. Jentzsch, A. Gebauer, and T. Lau (2008), Deformation, seismicity, and fluids: Results of the 2004/2005 water injection experiment at the KTB/Germany, J. Geophys. Res. 113, B11410, DOI: 10.1029/2008JB 005610.CrossRefGoogle Scholar
  21. Jost, M.L., T. Büsselberg, Ö. Jost, and H.-P. Harjes (1998), Source parameters of injection-induced microearthquakes at 9 km depth at the KTB DEEP Drilling site, Germany, Bull. Seism. Soc. Am. 88, 3, 815–832.Google Scholar
  22. Kovach, R.L. (1974), Source mechanisms for Wilmington Oil Field, California, subsidence earthquakes, Bull. Seism. Soc. Am. 64, 3, 699–711.Google Scholar
  23. Kümpel, H.-J., J. Erzinger, and S.A. Shapiro (2006), Two massive hydraulic tests completed in deep KTB pilot hole, Scientific Drilling 3, 40–42, DOI: 10.2204/ Scholar
  24. Leonard, M., and B.L.N. Kennett (1999), Multi-component autoregressive techniques for the analysis of seismograms, Phys. Earth Planet. Int. 113, 1–4, 247–263, DOI: 10.1016/S0031-9201(99)00054-0.CrossRefGoogle Scholar
  25. Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seism. Soc. Am. 66, 3, 639–666.Google Scholar
  26. McGarr, A. (1991), On a possible connection between three major earthquakes in California and oil production, Bull. Seism. Soc. Am. 81, 3, 948–970.Google Scholar
  27. McGarr, A. (1999), On relating apparent stress to the stress causing earthquake fault slip, J. Geophys. Res. 104, B2, 3003–3011, DOI: 10.1029/1998JB900083.CrossRefGoogle Scholar
  28. Moeck, I., T. Backers, and H. Schandelmeier (2007), Assessment of mechanical wellbore assessment by numerical analysis of fracture growth, EAGE 69th Conference and Exhibition, 11–14 June 2007, Extended abstracts volume, D047, London, UK.Google Scholar
  29. Moeck, I., H. Schandelmeier, and H.-G. Holl (2009a), The stress regime in a Rotliegend reservoir of the Northeast German Basin, Int. J. Earth Sci. 98, 7, 1643–1654, DOI: 10.1007/s00531-008-0316-1.CrossRefGoogle Scholar
  30. Moeck, I., G. Kwiatek, and G. Zimmermann (2009b), Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir, J. Struct. Geol. 31, 10, 1174–1182, DOI: 10.1016/j.jsg.2009.06.012.CrossRefGoogle Scholar
  31. Mueller, C.S. (1985), Source pulse enhancement by deconvolution of an empirical Green’s function, Geophys. Res. Lett. 12, 1, 33–36.CrossRefGoogle Scholar
  32. Nagano, K., H. Moriya, H. Asanuma, M. Sato, H. Niitsuma, and H. Kaieda (1994), Downhole AE measurement of hydraulic fracturing in Ogachi HDR model field, J. Geotherm. Res. Soc. Japan 16, 85–108 (in Japanese).Google Scholar
  33. Oye, V., H. Bungum, and M. Roth (2005), Source parameters and scaling relations for mining-related seismicity within the Pyhasalmi ore mine, Finland, Bull. Seism. Soc. Am. 95, 3, 1011–1026, DOI: 10.1785/0120040170.CrossRefGoogle Scholar
  34. Phillips, W.S., T.D. Fairbanks, J.T. Rutledge, and D.W. Anderson (1998), Induced microearthquake patterns and oil-producing fracture systems in the Austin chalk, Tectonophysics 289, 1–3, 153–169, DOI: 10.1016/S0040-1951(97) 00313-2.CrossRefGoogle Scholar
  35. Phillips, W.S., J.T. Rutledge, L.S. House, and M.C. Fehler (2002), Induced microearthquake patterns in hydrocarbon and geothermal reservoirs: Six case studies, Pure Appl. Geophys. 159, 1–3, 345–369.CrossRefGoogle Scholar
  36. Plesǐnger, A., M. Hellweg, and D. Seidl (1986), Interactive high-resolution polarization analysis of broadband seismograms, J. Geophys. 75, 129–139.Google Scholar
  37. Raleigh, C.B., J.H. Healy, and J.D. Bredehoeft (1972), Faulting and crustal stress at Rangely, Colorado. In: H.C. Heard et al. (eds.), Flow and Fracture of Rocks, Geophysical Monograph Series 16, AGU, Washington, D.C., 275–284.Google Scholar
  38. Richardson, E., and T.H. Jordan (2002), Seismicity in deep gold mines of South Africa: Implications for tectonic earthquakes, Bull. Seism. Soc. Am. 92, 5, 1766–1782, DOI: 10.1785/0120000226.CrossRefGoogle Scholar
  39. Shapiro, S.A., J. Kummerow, C. Dinske, G. Asch, E. Rothert, J. Erzinger, H.-J. Kumpel, and R. Kind (2006), Fluid induced seismicity guided by a continental fault: Injection experiment of 2004/2005 at the German Deep Drilling Site (KTB), Geophys. Res. Lett. 33, L01309, DOI: 10.1029/2005 GL024659.CrossRefGoogle Scholar
  40. Simiyu, S.M. (1999), Induced micro-seismicity during well discharge: OW-719, Olkaria, Kenya rift, Geothermics 28, 6, 785–802, DOI: 10.1016/S0375-6505 (99)00043-7.CrossRefGoogle Scholar
  41. Snoke, J.A. (1987), Stable determination of (Brune) stress drop, Bull. Seism. Soc. Am. 77, 2, 530–538.Google Scholar
  42. Tosha, T., M. Sugihara, and Y. Nishi (1998), Revised hypocenter solutions for microearthquakes in the Kakkonda geothermal field, Japan, Geothermics 27, 5–6, 553–571, DOI: 10.1016/S0375-6505(98)00033-9.CrossRefGoogle Scholar
  43. Trautwein, U., and E. Huenges (2005), Poroelastic behaviour of physical properties in Rotliegend sandstones under uniaxial strain, Int. J. Rock Mech. Min. Sci. 42, 7–8, 924–932, DOI: 10.1016/j.ijrmms.2005.05.016.Google Scholar
  44. Urbancic, T.I., and R.P. Young (1993), Space-time variations in source parameters of mining-induced seismic events with M < 0, Bull. Seism. Soc. Am. 83, 2, 378–397.Google Scholar
  45. Urbancic, T.I., and C.-I. Trifu (1996), Effects of rupture complexity and stress regime on scaling relations of induced microseismic events, Pure Appl. Geophys. 147, 2, 319–343, DOI: 10.1007/BF00877486.CrossRefGoogle Scholar
  46. Waldhauser, F., W.L. Ellsworth, D.P. Schaff, and A. Cole (2004), Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity, Geophys. Res. Lett. 31, L18608, DOI: 10.1029/2004GL020649.CrossRefGoogle Scholar
  47. Weber, M., F. Zetsche, T. Ryberg, A. Schulze, E. Spangenberg, and E. Huenges (2005), Seismic detection limits of small, man-made reflectors: A test at a geothermal site in Northern Germany, Bull. Seismol. Soc. Am. 95, 4, 1567–1573, DOI: 10.1785/0120040124.CrossRefGoogle Scholar
  48. Yokota, T., S. Zhou, M. Mizoue, and I. Nakamura (1981), An automatic measurement of arrival time of seismic waves and its application to an on-line processing system, Bull. Earthq. Res. Inst. Univ. Tokyo 55, 449–484.Google Scholar
  49. Zimmermann, G., and A. Reinicke (2010), Hydraulic stimulation of a deep sandstone reservoir to develop an Enhanced Geothermal System: Laboratory and field experiments, Geothermics 39, 1, 70–77, DOI: 10.1016/j.geothermics.2009.12.003.CrossRefGoogle Scholar
  50. Zimmermann, G., A. Reinicke, W. Brandt, G. Blöcher, H. Milsch, H-G. Holl, I. Moeck, T. Schulte, A. Saadat, and E. Huenges (2008), Results of stimulation treatments at the geothermal research wells in Groß Schönebeck/Germany, Proc. Thirty-Third Workshop on Geothermal Reservoir Engineering, January 28–30, Stanford University, Stanford, CA, SGP-TR-185.Google Scholar
  51. Zimmermann, G., T. Tischner, B. Legarth, and E. Huenges (2009), Pressure-dependent production efficiency of an Enhanced Geothermal System (EGS): Stimulation results and implications for hydraulic fracture treatments, Pure Appl. Geophys. 166, 5–7, 1089–1106, DOI: 10.1007/s00024-009-0482-5.CrossRefGoogle Scholar
  52. Zimmermann, G., I. Moeck, and G. Blöcher (2010), Cyclic waterfrac stimulation to develop an enhanced geothermal system (EGS) — Conceptual design and experimental results, Geothermics 39, 1, 59–69, DOI: 10.1016/j.geothermics.2009.10.003.CrossRefGoogle Scholar
  53. Zoback, M.D., and H.-P. Harjes (1997), Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany, J. Geophys. Res. 102, B8, 18477–18491, DOI: 10.1029/96JB02814.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Grzegorz Kwiatek
    • 1
  • Marco Bohnhoff
    • 1
  • Georg Dresen
    • 1
  • Ali Schulze
    • 1
  • Thomas Schulte
    • 1
  • Günter Zimmermann
    • 1
  • Ernst Huenges
    • 1
  1. 1.Helmholtz Centre PotsdamGFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations