Acta Geophysica

, Volume 58, Issue 6, pp 1040–1055 | Cite as

EM and GPR investigations of contaminant spread around the Hoc Mon waste site, Vietnam

  • Nguyen van GiangEmail author
  • Guy Marquis
  • Le Huy Minh


This paper is presenting the results from near-surface geophysical surveys near the waste site of Hoc Mon in southern Vietnam where leachate contamination has been recognized at the surface. Using EM and GPR surveys, we were able to determine the lateral extent of a contaminated area of high electrical conductivity and have identified channels that concentrate the contaminant flow. The simple relationship between the electrical resistivity and the leachate concentration is suggested and estimated the in situ leachate concentration from the inversion of the EM data; values are as high as 40%. Thanks to a permeability barrier leachate flow is confined to the shallow subsurface, making it easier to apply possible site remediation projects.

Key words

electromagnetic methods ground-penetrating radar leachate flow contaminant concentration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-Zeid, N., G. Bianchini, G. Santarato, and C. Vaccaro (2004), Geochemical characterisation and geophysical mapping of landfill leachates: the Marozzo canal case study (NE Italy), Environ. Geol. 45, 4, 439–447, DOI: 10.1007/s00254-003-0895-x.CrossRefGoogle Scholar
  2. Anderson, W.L. (1979), Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering, Geophysics 44, 7, 1287–1305, DOI: 10.1190/1.1441007.CrossRefGoogle Scholar
  3. Baedecker, M.J., and W. Back (1979), Hydrogeological processes and chemical reactions at a landfill, Ground Water 17, 5, 429–437, DOI: 10.1111/j.1745-6584.1979.tb03338.x.CrossRefGoogle Scholar
  4. Bano, M. (2006), Effects of the transition zone above a water table on the reflection of GPR waves, Geophys. Res. Lett. 33, L13309, DOI: 10.1029/2006 GL026158.CrossRefGoogle Scholar
  5. Bano, M., G. Marquis, B. Nivière, J.C. Maurin, and M. Cushing (2000), Investigating alluvial and tectonic features with ground-penetrating radar and analyzing diffractions patterns, J. Appl. Geophys. 43, 1, 33–41, DOI: 10.1016/S0926-9851(99)00031-2.CrossRefGoogle Scholar
  6. Bernstone, C., T. Dahlin, T. Ohlsson, and W. Hogland (2000), DC-resistivity mapping of internal landfill structures: two pre-excavation surveys, Environ. Geol. 39, 360–371, DOI: 10.1007/s002540050015.CrossRefGoogle Scholar
  7. Christensen, T.H., P.L. Bjerg, S.A. Banwart, R. Jakobsen, G. Heron, and H.J. Albrechtsen (2000), Characterization of redox conditions in groundwater contaminant plumes, J. Contam. Hydrol. 45, 3–4, 165–241, DOI: 10.1016/S0169-7722(00)00109-1.CrossRefGoogle Scholar
  8. Daniels, D.J. (1996), Surface-Penetrating Radar, Institution of Electrical Engineers, London, UK, 300 pp.Google Scholar
  9. Girard, J.F. (2002), Imagerie géoradar et modélisation des diffractions multiples, Ph.D. Thesis, University of L. Pasteur, Strasbourg.Google Scholar
  10. Guérin, R., M.L. Munoz, C. Aran, C. Lapperrelle, M. Hidra, E. Drouart, and S. Grellier (2004), Leachate recirculation: moisture content assessment by means of a geophysical technique, Waste Mgmt. 24, 8, 785–794, DOI: 10.1016/j.wasman.2004.03.010.CrossRefGoogle Scholar
  11. Jorstad, L.B., J. Jankowski, and R.I. Acworth (2004), Analysis of the distribution of inorganic constituents in a landfill leachate-contaminated aquifer: Astrolabe Park, Sydney, Australia, Environ. Geol. 46, 2, 263–272, DOI: 10.1007/s00254-004-0978-3.CrossRefGoogle Scholar
  12. McNeill, J.D. (2000), Application of dipole-dipole electromagnetic systems for geological depth sounding, Technical Note TN-31, Geonics Limited, Mississauga, Canada.Google Scholar
  13. Naudet, V., A. Revil, J.Y. Bottero, and P. Bégassat (2003), Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater, Geophys. Res. Lett. 30, 21, 2091, DOI: 10.1029/2003GL018096.CrossRefGoogle Scholar
  14. Nobes, D.C., M.J. Armstrong, and M.E. Close (2000), Delineation of a landfill leachate plume and flow channels in coastal sands near Christchurch, New Zealand, using a shallow electromagnetic survey method, Hydrogeol. J. 8, 3, 328–336, DOI: 10.1007/s100400000063.CrossRefGoogle Scholar
  15. Oh, M.H., J.H. Lee, G.L. Yoon, and J. Park (2003), Pilot-scale field model tests for detecting landfill leachate intrusion into the subsurface using a grid-net electrical conductivity measurement system, Environ. Geol. 45, 2, 181–189, DOI: 10.1007/s00254-003-0880-4.CrossRefGoogle Scholar
  16. Tezkan, B. (1999), A review of environmental applications of quasi-stationary electromagnetic techniques, Surv. Geophys. 20, 3–4, 279–308, DOI: 10.1023/A:1006669218545.CrossRefGoogle Scholar
  17. Ward, S.H., and G.W. Hohmann (1988), Electromagnetic theory for geophysical applications. In: M.N. Nabighian (ed.), Electromagnetic Methods in Applied Geophysics, Vol. 1: Theory, Society of Exploration Geophysicists, Tulsa, 131–311.Google Scholar
  18. Won, I.J., D.A. Keiswetter, G.R.A. Fields, and L.C. Sutton (1996), GEM-2: A new multifrequency electromagnetic sensor, J. Environ. Eng. Geoph. 1, 129–138, DOI: 10.4133/JEEG1.2.129.CrossRefGoogle Scholar
  19. Yoon, G.L., and J.B. Park (2001), Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils, J. Hazard. Mater. 84, 2–3, 147–161, DOI: 10.1016/S0304-3894(01)00197-2.CrossRefGoogle Scholar
  20. Zhang, Z., P.S. Routh, D.W. Oldenburg, D.L. Alumbaugh, and G.A. Newman (2000), Reconstruction of 1-D conductivity from dual-loop EM data, Geophysics 65, 492–501, DOI: 10.1190/1.1444743.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  1. 1.Institute of GeophysicsVietnamese Academy of Science and TechnologyHanoiVietnam
  2. 2.EOST-IPGS, University of Strasbourg and CNRSStrasbourgFrance

Personalised recommendations