Advertisement

Acta Geophysica

, Volume 58, Issue 5, pp 719–766 | Cite as

Toward a unified solid state theory for pre-earthquake signals

  • Friedemann Freund
Article

Abstract

Many different non-seismic pre-earthquake signals have been reported but there is great uncertainty about their origin, their correlation to each other and to the impending seismic event. The discovery of stress-activated electric currents in rocks provides a possible explanation. Stresses activate electronic charge carriers, namely defect electrons in the oxygen anion sublattice, equivalent to O in a matrix of O2−, also known as positive holes. These charge carriers pre-exist in unstressed rocks in a dormant, electrically inactive state as peroxy links, O3Si-OO-SiO3, where two O are tightly bound together. Under stress dislocations sweep through the mineral grains causing the peroxy links to break. Positive holes, thus generated, flow down stress gradients, constituting an electric current with attendant magnetic field variations and EM emissions. The positive holes accumulate at the surface, creating electric fields, strong enough to field-ionize air molecules. They also recombine leading to a spectroscopically distinct IR emission seen in laboratory experiments and night-time infrared satellite images. In addition positive holes interact with radon in the soil, affecting the radon emanation.

Key words

pre-earthquake signals peroxy positive holes EM emissions earthquake lights thermal infrared anomalies radon emanation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araiza-Quijano, M.R., and G. Hernández-del-Valle (1996), Some observations of atmospheric luminosity as a possible earthquake precursor, Geofisica Int. 35, 403–408.Google Scholar
  2. Bai, L.-P., J.-G. Du, W. Liu, and W.-G. Zhou (2002), The experimental studies on electrical conductivities and P-wave velocities of anorthosite at high pressure and high temperature, Acta Seism. Sinica 15, 6, 667–676, DOI: 10.1007/s11589-002-0091-1.CrossRefGoogle Scholar
  3. Balk, M., M. Bose, G. Ertem, D.A. Rogoff, L.J. Rothschild, and F.T. Freund (2009), Oxidation of water to hydrogen peroxide at the rock-water interface due to stress-activated electric currents in rocks, Earth Planet. Sci. Lett. 283, 1–4, 87–92, DOI: 10.1016/j.epsl.2009.03.044.CrossRefGoogle Scholar
  4. Bilitza, D. (2001), International Reference Ionosphere 2000, Radio Sci. 36, 2, 261–275, DOI: 10.1029/2000RS002432.CrossRefGoogle Scholar
  5. Bishop, J.R. (1981), Piezoelectric effects in quartz-rich rocks, Tectonophysics 77, 3-4, 297–321, DOI: 10.1016/0040-1951(81)90268-7.CrossRefGoogle Scholar
  6. Bleier, T., C. Dunson, M. Maniscalco, N. Bryant, R. Bambery, and F.T. Freund (2009), Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5.4 earthquake, Nat. Hazards Earth Syst. Sci. 9, 585–603.CrossRefGoogle Scholar
  7. Brace, W.F. (1975), Dilatancy-related electrical resistivity changes in rocks, Pure Appl. Geophys. 113, 1, 207–217, DOI: 10.1007/BF01592911.CrossRefGoogle Scholar
  8. Brace, W.F., B.W. Paulding, and C. Scholz (1966), Dilatancy in the fracture of crystalline rocks, J. Geophys. Res. 71, 16, 3939–3953.Google Scholar
  9. Chen, Y.L., J.Y. Chuo, J.Y. Liu, and S.A. Pulinets (1999), A statistical study of ionospheric precursors of strong earthquakes in the Taiwan area, 24th General Ass. URSI, URSI, 745 pp.Google Scholar
  10. Chen, Y.I., J.Y. Liu, Y.B. Tsai, and C.S. Chen (2004), Statistical tests for pre-earthquake ionospheric anomaly, Terr. Atmos. Ocean. Sci. 15, 3, 385–396.Google Scholar
  11. Chyi, L.L., C.Y. Chou, F.T. Yang, and C.H. Chen (2002), Automated radon monitoring of seismicity in a fault zone, Geofisica Int. 41, 507–511.Google Scholar
  12. Conklin, A.R., Jr. (ed.) (2006), Introduction to Soil Chemistry. Analysis and Instrumentation, Wiley Interscience, New York.Google Scholar
  13. Console, R., D. Pantosti, and G. D’Addezio (2002), Probabilistic approach to earthquake prediction, Ann. Geophys. 45, 6, 723–731.Google Scholar
  14. Depuev, V., and T. Zelenova (1996), Electron density profile changes in a pre-earthquake period, Adv. Space Res. 18, 6, 115–118, DOI: 10.1016/0273-1177(95)00911-6.CrossRefGoogle Scholar
  15. Derr, J.S. (1986), Rock mechanics: Luminous phenomena and their relationship to rock fracture, Nature 321, 470–471, DOI: 10.1038/321470a0.CrossRefGoogle Scholar
  16. Dobrovolsky, I.P., S.I. Zubkov, and V.I. Miachkin (1979), Estimation of the size of earthquake preparation zones, Pure Appl. Geophys. 117, 5, 1025–1044, DOI: 10.1007/BF00876083.CrossRefGoogle Scholar
  17. Duba, A., and S. Constable (1993), The electrical conductivity of a lherzolite, J. Geophys. Res. 98, B7, 11885–11899, DOI: 10.1029/93JB00995.CrossRefGoogle Scholar
  18. Dunajecka, M.A., and S.A. Pulinets (2005), Atmospheric and thermal anomalies observed around the time of strong earthquakes in México, Atmósfera 18, 236–247.Google Scholar
  19. Finkelstein, D., R.D. Hill, and J.R. Powell (1973), The piezoelectric theory of earthquake lightning, J. Geophys. Res. 78, 6, 992–993, DOI: 10.1029/JC078i006p00992.CrossRefGoogle Scholar
  20. Freund, F. (1985), Conversion of dissolved “water” into molecular hydrogen and peroxy linkages, J. Non-Cryst. Solids 71, 1–3, 195–202, DOI: 10.1016/0022-3093(85)90288-1.CrossRefGoogle Scholar
  21. Freund, F. (2002), Charge generation and propagation in igneous rocks, J. Geodyn. 33, 4–5, 543–570, DOI: 10.1016/S0264-3707(02)00015-7.CrossRefGoogle Scholar
  22. Freund, F. (2003), On the electrical conductivity structure of the stable continental crust, J. Geodyn. 35, 3, 353–388, DOI: 10.1016/S0264-3707(02) 00154-0.CrossRefGoogle Scholar
  23. Freund, F.T. (2007a), Pre-earthquake signals - Part I: Deviatoric stresses turn rocks into a source of electric currents, Nat. Hazards Earth Syst. Sci. 7, 1–7.CrossRefGoogle Scholar
  24. Freund, F.T. (2007b), Pre-earthquake signals - Part II: Flow of battery currents in the crust, Nat. Hazards Earth Syst. Sci. 7, 543–548.CrossRefGoogle Scholar
  25. Freund, F.T. (2009), Stress-activated positive hole charge carriers in rocks and the generation of pre-earthquake signals. In: M. Hayakawa (ed.), Electromagnetic Phenomena Associated with Earthquakes, Research Signpost, New Dehli, 41–96.Google Scholar
  26. Freund, F., and D. Sornette (2007), Electro-magnetic earthquake bursts and critical rupture of peroxy bond networks in rocks, Tectonophysics 431, 1–4, 33–47, DOI: 10.1016/j.tecto.2006.05.032.CrossRefGoogle Scholar
  27. Freund, F., M.M. Freund, and F. Batllo (1993), Critical review of electrical conductivity measurements and charge distribution analysis of magnesium oxide, J. Geophys. Res. 98, B12, 22209–22229, DOI: 10.1029/93JB01327.CrossRefGoogle Scholar
  28. Freund, F.T., A. Takeuchi, and B.W.S. Lau (2006), Electric currents streaming out of stressed igneous rocks - A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth 31, 4–9, 389–396, DOI: 10.1016/j.pce.2006.02.027.Google Scholar
  29. Freund, F.T., A. Takeuchi, B.W.S. Lau, A. Al-Manaseer, C.C. Fu, N.A. Bryant, and D. Ouzounov (2007), Stimulated infrared emission from rocks: Assessing a stress indicator, eEarth 2, 7–16.CrossRefGoogle Scholar
  30. Freund, F.T., I.G. Kulahci, G. Cyr, J. Ling, M. Winnick, J. Tregloan-Reed, and M.M. Freund (2009), Air ionization at rock surfaces and pre-earthquake signals, J. Atmos. Sol.-Terr. Phys. 71, 17-18, 1824–1834, DOI: 10.1016/j.jastp.2009.07.013.CrossRefGoogle Scholar
  31. Galli, I. (1910), Raccolta e classifzione di fenomeni luminosi osservati nei terremoti, Boll. Soc. Sism. Ital. 14, 221–448.Google Scholar
  32. Geller, R.J., D.D. Jackson, Y.Y. Kagan, and F. Mulargia (1997), Earthquakes cannot be predicted, Science 275, 5306, 1616–1617, DOI: 10.1126/science.275.5306.1616.CrossRefGoogle Scholar
  33. Gerber, R.B. (2004), Formation of novel rare-gas molecules in low-temperature matrices, Ann. Rev. Phys. Chem. 55, 55–78, DOI: 10.1146/annurev.physchem.55.091602.094420.Google Scholar
  34. Glover, P.W.J., and F.J. Vine (1992), Electrical conductivity of carbonbearing granulite at raised temperatures and pressures, Nature 360, 723–726, DOI: 10.1038/360723a0.CrossRefGoogle Scholar
  35. Glover, P.W.J., and F.J. Vine (1994), Electrical conductivity of the continental crust, Geophys. Res. Lett. 21, 22, 2357–2360, DOI: 10.1029/94GL01015.CrossRefGoogle Scholar
  36. Gringel, W., J.M. Rosen, and D.J. Hofmann (1986), Electrical structure from 0 to 30 kilometers. In: The Earth’s Electrical Environment, National Academic Press, Washington, DC, 166–182.Google Scholar
  37. Griscom, D.L. (1990), Electron spin resonance, Glass Sci. Technol. 4B, 151–251.Google Scholar
  38. Grunewald, E.D., and R.S. Stein (2006), A new 1649–1884 catalog of destructive earthquakes near Tokyo and implications for the long-term seismic process, J. Geophys. Res. 111, B12306, DOI: 10.1029/2005JB004059.CrossRefGoogle Scholar
  39. Guo, G., and B. Wang (2008), Cloud anomaly before Iran earthquake, Int. J. Remote Sensing 29, 7, 1921–1928, DOI: 10.1080/01431160701373762.CrossRefGoogle Scholar
  40. Hadley, K. (1975), Azimuthal variation of dilatancy, J. Geophys, Res. 80, 35, 4845–4850, DOI: 10.1029/JB080i035p04845.CrossRefGoogle Scholar
  41. Hattori, K., K. Wadatsumi, R. Furuya, N. Yada, I. Yamamoto, K. Ninagawa, Y. Ideta, and M. Nishihashi (2008), Variation of radioactive atmospheric ion concentration associated with large earthquakes, AGU Fall Meeting 2008, San Francisco, CA.Google Scholar
  42. Hayakawa, M. (2007), VLF/LF radio sounding of ionospheric perturbations associated with earthquakes, Sensors 7, 7, 1141–1158, DOI: 10.3390/s7071141.CrossRefGoogle Scholar
  43. Hayakawa, M., A.V. Shvets, and S. Maekawa (2005), Subionospheric LF monitoring of ionospheric perturbations prior to the Tokachi-oki earthquake and a possible mechanism of lithosphere-ionosphere coupling, Adv. Polar Upper Atmos. Res. 19, 42–54.Google Scholar
  44. Hayakawa, M., S. Pulinets, M. Parrot, and O.A. Molchanov (2006), Recent progress in seismoelectromagnetics and related phenomena, Phys. Chem. Earth 31, 4–9, 129–131, DOI: 10.1016/j.pce.2006.05.001.Google Scholar
  45. Hedervari, P., and Z. Noszticzius (1985), Recent results concerning earthquake lights, Ann. Geophys. 3, 6, 705–708.Google Scholar
  46. Hollerman, W.A., B Lau, R.J. Moore, C.A. Malespin, N.P. Bergeron, F.T. Freund, and P.J. Wasilewski (2006), Electric currents in granite and gabbro generated by impacts up to 1 km/sec, AGU Fall Meeting 2006, San Francisco.Google Scholar
  47. Hoppel, W.A., R.V. Anderson, and J.C. Willett (1986), Atmospheric electricity in the planetary boundary layer. In: The Earth’s Electrical Environment, National Academic Press, Washington, DC, 149–165.Google Scholar
  48. İnan, S., C. Seyis, N. Görür, S. Ergintav, R. Saatçilar, M. Bas, K. Cuff, D. Karakas, H. Yakan, S. Akar, A. Belgen, R. Çakmak, L. Kurt, S. Canan, R. Kafarov, and S. Çetin (2003), Radon gas activity: A possible earthquake precursor in the Marmara region (NW Turkey), The 1st Intern. Workshop on “Earthquake Prediction”, ESC, Athens, Greece.Google Scholar
  49. İnan, S., T. Akgül, C. Seyis, R. Saatçılar, S. Baykut, S. Ergintav, and M. Baş (2008), Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity, J. Geophys. Res. 113, B03401, DOI: 10.01029/02007JB005206.CrossRefGoogle Scholar
  50. Johnston, M.J.S. (1997), Review of electric and magnetic fields accompanying seismic and volcanic activity, Surv. Geophys. 18, 5, 441–476, DOI: 10.1023/A:1006500408086.CrossRefGoogle Scholar
  51. Kathrein, H., and F. Freund (1983), Electrical conductivity of magnesium oxide single crystal below 1200 K, J. Phys. Chem. Solids 44, 3, 177–186, DOI: 10.1016/0022-3697(83)90052-5.CrossRefGoogle Scholar
  52. Kazatchenko, E., M. Markov, and A. Mousatov (2004), Joint modeling of acoustic velocities and electrical conductivity from unified microstructure of rocks, J. Geophys. Res. 109, B01202, DOI: 01210.01029/02003JB002443.CrossRefGoogle Scholar
  53. King, B.V., and F. Freund (1984), Surface charges and subsurface space-charge distribution in magnesium oxide containing dissolved traces of water, Phys. Rev. B 29, 5814–5824, DOI: 10.1103/PhysRevB.29.5814.CrossRefGoogle Scholar
  54. King, C.-Y. (1980), Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes, J. Geophys. Res. 85, B6, 3065–3078, DOI: 10.1029/JB085iB06p03065.CrossRefGoogle Scholar
  55. King, C.-Y. (1983), Earthquake prediction: Electromagnetic emissions before earthquakes, Nature 301, 377, DOI: 10.1038/301377a0.CrossRefGoogle Scholar
  56. Kolvankar, V.G. (2001), Earthquake sequence of 1991 from Valsad region, Guajrat, Report BARC-2001/E/006, Bhabha Atomic Research Centre, Seismology Div., Mumbai, India.Google Scholar
  57. Korneev, V. (2010), Seismicity precursors for active monitoring of earthquakes. In: J. Kasahara, V. Korneev, and M. Zhdanov (eds.), Active Geophysical Monitoring, Vol. 40, Ser. Handbook of Geophysical Exploration: Seismic Exploration, 5–28.Google Scholar
  58. Li, W.-K., G.-D. Zhou, and T.C.W. Mak (2008), Advanced Structural Inorganic Chemistry, International Union of Crystallography, Oxford University Press, 688 pp.Google Scholar
  59. Liperovsky, V.A., O.A. Pokhotelov, E.V. Liperovskaya, M. Parrot, C.-V. Meister, and O.A. Alimov (2000), Modification of sporadic E-layers caused by seismic activity, Surv. Geophys. 21, 5–6, 449–486, DOI: 10.1023/A:1006711603561.CrossRefGoogle Scholar
  60. Liu, J.Y., Y. Chuo, S. Shan, Y. Tsai, Y. Chen, S. Pulinets, and S.B. Yu (2004), Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements, Ann. Geophys. 22, 1585–1593.CrossRefGoogle Scholar
  61. Liu, J.Y., Y.I. Chen, Y.J. Chuo, and C.S. Chen (2006), A statistical investigation of preearthquake ionospheric anomaly, J. Geophys. Res. 111, A05304, DOI: 10.1029/2005JA011333.CrossRefGoogle Scholar
  62. Lockner, D.A., M.J.S. Johnston, and J.D. Byerlee (1983), A mechanism to explain the generation of earthquake lights, Nature 302, 28–33, DOI: 10.1038/302028a0.CrossRefGoogle Scholar
  63. Losseva, T.V., and I.V. Nemchinov (2005), Earthquake lights and rupture processes, Nat. Hazard Earth Syst. Sci. 5, 649–656.CrossRefGoogle Scholar
  64. Lu, D. (1988), Impending Earthquake Prediction, Jinangsu Science and Publishing House, Nanjing, China.Google Scholar
  65. Mack, K. (1912), Das süddeutsche Erdbeben vom 16. November 1911, Abschnitt VII: Lichterscheinungen, Würtembergische Jahrbücher für Statistik and Landeskunde, Stuttgart.Google Scholar
  66. Maekawa, S., T. Horie, T. Yamauchi, T. Sawaya, M. Ishikawa, M. Hayakawa, and H. Sasaki (2006), A statistical study on the effect of earthquakes on the ionosphere, based ont he subionospheric LF propagation data in Japan, Ann. Geophys. 24, 2219–2225.CrossRefGoogle Scholar
  67. Manna, S.S., and B.K. Chakrabarti (1987), Dielectric breakdown in the presence of random conductors, Phys. Rev. B 36, 4078–4081, DOI: 10.1103/PhysRevB.36.4078.CrossRefGoogle Scholar
  68. Mulargia, F., and R.J. Geller (eds.) (2003), Earthquake Science and Seismic Risk Reduction, NATO Science Series, Kluwer Academic, Dordrecht.Google Scholar
  69. Nagarajaa, K., B.S.N. Prasad, M.S. Madhava, M.S. Chandrashekara, L. Paramesh, J. Sannappa, S.D. Pawar, P. Murugavel, and A.K. Kamra (2003), Radon and its short-lived progeny: Variations near the ground, Radiat. Meas. 36, 1–6, 413-417, DOI: 10.1016/S1350-4487(03)00162-8.CrossRefGoogle Scholar
  70. Nur, A. (1974), Matsushiro, Japan, earthquake swarm: Confirmation of the dilatancy-fluid diffusion model, Geology 2, 5, 217–221, DOI: 10.1130/0091-7613(1974)2〈217:MJESCO〉2.0.CO;2.CrossRefGoogle Scholar
  71. Ogawa, T., and H. Utada (2000), Coseismic piezoelectric effects due to a dislocation: 1. An analytic far and early-time field solution in a homogeneous whole space, Phys. Earth Planet. Int. 121, 3–4, 273–288, DOI: 10.1016/S0031-9201(00)00177-1.CrossRefGoogle Scholar
  72. Omori, Y., H. Nagahama, Y. Kawada, Y. Yasuoka, T. Ishikawa, S. Tokonami, and M. Shinogi (2009), Preseismic alteration of atmospheric electrical conditions due to anomalous radon emanation, Phys. Chem. Earth 34, 6–7, 435–440, DOI: 10.1016/j.pce.2008.08.001.Google Scholar
  73. Ondoh, T. (2003), Anomalous sporadic-E layers observed before M 7.2 Hyogo-ken Nanbu earthquake; Terrestrial gas emanation model, Adv. Polar Upper Atmos. Res. 17, 96–108.Google Scholar
  74. Ouellet, M. (1990), Earthquake lights and seismicity, Nature 348, 492, DOI: 10.1038/348492a0.CrossRefGoogle Scholar
  75. Ouzounov, D., and F. Freund (2004), Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data, Adv. Space Res. 33, 3, 268–273, DOI: 10.1016/S0273-1177(03)00486-1.CrossRefGoogle Scholar
  76. Ouzounov, D., N. Bryant, T. Logan, S. Pulinets, and P. Taylor (2006), Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003, Phys. Chem. Earth 31, 4-9, 154–163, DOI: 10.1016/j.pce.2006.02.036.Google Scholar
  77. Oyama, K.I., Y. Kakinami, J.Y. Liu, M. Kamogawa, and T. Kodama (2008), Reduction of electron temperature in low-latitude ionosphere at 600 km before and after large earthquakes, J. Geophys. Res. 113, A11317, DOI: 10.1029/2008JA013367.CrossRefGoogle Scholar
  78. Parkhomenko, E.I., and A.T. Bondarenko (1986), Electrical conductivity of rocks at high pressures and temperatures, NASA, Washington, D.C., 292 pp.Google Scholar
  79. Patra, H.P., and S.K. Nath (1999), Schumberger Geolectric Sounding in Ground Water (Principles, Interpretation and Application), Oxford and IBH Publishing Co., New Delhi.Google Scholar
  80. Pulinets, S.A. (2007), Natural radioactivity, earthquakes, and the ionosphere, EOS 88, 20, 217–218, DOI: 10.1029/2007EO200001.CrossRefGoogle Scholar
  81. Pulinets, S.A. (2009), Physical mechanism of the vertical electric field generation over active tectonic faults, Adv. Space Res. 44, 6, 767–773, DOI: 10.1016/j.asr.2009.04.038.CrossRefGoogle Scholar
  82. Pulinets, S.A., A. Leyva Contreras, G. Bisiacchi-Giraldi, and L. Ciraolo (2005), Total electron content variations in the ionosphere before the Colima, Mexico, earthquake of 21 January 2003, Geofisica Int. 44, 4, 369–377.Google Scholar
  83. Pulinets, S.A., D. Ouzounov, L. Ciraolo, R. Singh, G. Cervone, A. Leyva, M. Dunajecka, A.V. Karelin, K.A. Boyarchuk, and A. Kotsarenko (2006), Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003, Ann. Geophys. 24, 835–849.CrossRefGoogle Scholar
  84. Qian, F., Y. Zhao, M. Yu, Z. Wang, X. Liu, and S. Chang (1983), Geoelectric resistivity anomalies before earthquakes, Scientia Sinica B 26, 326–336.Google Scholar
  85. Qian, F.Y., B.R. Zhao, W. Qian, J. Zhao, S.G. He, H.K. Zhang, S.Y. Li, S.K. Li, G.L. Yan, C.M. Wang, Z.K. Sun, D.N. Zhang, J. Lu, P. Zhang, G.J. Yang, J.L. Sun, C.S. Guo, Y.X. Tang, J.M. Xu, K.T. Xia, H. Ju, B.H. Yin, M. Li, D.S. Yang, W.L. Qi, T.M. He, H.P. Guan, and Y.L. Zhao (2009), Impending HRT wave precursors to the Wenchuan Ms 8.0 earthquake and methods of earthquake impending prediction by using HRT wave, Science in China, Series D: Earth Sciences 52, 10, 1572–1584, DOI: 10.1007/s11430-009-0124-x.CrossRefGoogle Scholar
  86. Qiang, Z., C. Dian, L. Li, M. Xu, F. Ge, T. Liu, Y. Zhao, and M. Guo (1999), Satellitic thermal infrared brightness temperature anomaly image - shortterm and impending earthquake precursors, Science in China, Series D: Earth Sciences 42, 3, 313–324, DOI: 10.1007/BF02878968.CrossRefGoogle Scholar
  87. Qiang, Z.-J., X.-D. Xu, and C.-D. Dian (1991), Thermal infrared anomaly - precursor of impending earthquakes, Chinese Sci. Bull. 36, 319–323.Google Scholar
  88. Ricci, D., G. Pacchioni, M.A. Szymanski, A.L. Shluger, and A.M. Stoneham (2001), Modeling disorder in amorphous silica with embedded clusters: The peroxy bridge defect center, Phys. Rev. B 64, 22, 224101–224108, DOI: 10.1103/PhysRevB.64.224104.Google Scholar
  89. Rishbeth, H. (2006), F-region links with the lower atmosphere?, J. Atmos. Sol.-Terr. Phys. 68, 3–5, 469–478, DOI: 1016/j.jastp.2005.03.017.CrossRefGoogle Scholar
  90. Rishbeth, H. (2007), Do Earthquake Precursors Really Exist?, Eos Trans. AGU 88, 29, DOI: 10.1029/2007EO290008.Google Scholar
  91. Rycroft, M.J., R.G. Harrison, K.A. Nicoll, and E.A. Mareev (2008), An overview of Earth’s Global electric circuit and atmospheric conductivity, Space Science Rev. 137, 1–4, 83–105 DOI: 10.1007/s11214-008-9368-6.CrossRefGoogle Scholar
  92. Saraf, A.K., V. Rawat, P. Banerjee, S. Choudhury, S.K. Panda, S. Dasgupta, and J.D. Das (2008), Satellite detection of earthquake thermal infrared precursors in Iran, Nat. Hazards 47, 1, 119–135, DOI: 10.1007/s11069-007-9201-7.CrossRefGoogle Scholar
  93. Scholz, C.H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge Univ. Press, Cambridge, 471 pp.Google Scholar
  94. Shankland, T.J., A.G. Duba, E.A. Mathez, and C.L. Peach (1997), Increase of electrical conductivity with pressure as an indicator of conduction through a solid phase in midcrustal rocks, J. Geophys. Res. 102, B7, 14,741–14,750.Google Scholar
  95. Shluger, A.L., E.N. Heifets, J.D. Gale, and C.R.A. Catlow (1992), Theoretical simulation of localized holes in MgO, J. Phys.: Condens. Matter 4, 5711–5722, DOI: 10.1088/0953-8984/4/26/005.CrossRefGoogle Scholar
  96. Singh, B. (2008), Electromagnetic Phenomenon Related to Earthquakes and Volcanoes, Narosa Publ. House, New Delhi.Google Scholar
  97. Sobolev, G.A. (2004), Microseismic variations prior to a strong earthquake, Fiz. Zemli 6, 3–13 and also Izvestiya, Physics Solid Earth 40, 455–464 (2004).Google Scholar
  98. Sobolev, G.A., and A.A. Lyubushin (2006), Microseismic impulses as earthquake precursors, Izvestiya, Physics Solid Earth 42, 9, 721–733, DOI: 10.1134/S1069351306090023.CrossRefGoogle Scholar
  99. Sobolev, G.A., and A.A. Lyubushin (2007), Microseismic anomalies before the Sumatra earthquake of December 26, 2004, Izvestiya, Physics Solid Earth 43, 5, 341–353, DOI: 10.1134/S1069351307050011.CrossRefGoogle Scholar
  100. Sobolev, G.A., A.A. Lyubushin, and N.A. Zakrzhevskaya (2005), Synchronization of microseismic variations within a minute range of periods, Izvestiya, Physics Solid Earth 41, 8, 599–621.Google Scholar
  101. Sorokin, V.M., V.M. Chmyrev, and A.K. Yaschenko (2006a), Possible DC electric field in the ionosphere related to seismicity, Adv. Space Res. 37, 4, 666–670, DOI: 10.1016/j.asr.2005.05.066.CrossRefGoogle Scholar
  102. Sorokin, V.M., A.K. Yaschenko, and M. Hayakawa (2006b), Formation mechanism of the lower-ionospheric disturbances by the atmosphere electric current over a seismic region, J. Atmos. Sol.-Terr. Phys. 68, 11, 1260–1268, DOI: 10.1016/j.jastp.2006.03.005.CrossRefGoogle Scholar
  103. St-Laurent, F. (1991), Corona effect and electro-atmospheric discharges: Possible luminous effect following earthquakes?, J. Meteorol. 16, 238–241.Google Scholar
  104. St-Laurent, F. (2000), The Saguenay, Québec, earthquake lights of November 1988–January 1989, Seismol. Res. Lett. 71, 160–174.CrossRefGoogle Scholar
  105. St-Laurent, F., J.S. Derr, and F.T. Freund (2006), Earthquake lights and the stressactivation of positive hole charge carriers in rocks, Phys. Chem. Earth 31, 5–9, 305–312, DOI: 10.1016/j.pce.2006.02.003.Google Scholar
  106. Stewart, T.R. (2000), Uncertainty, judgment, and error in prediction. In: D. Sarewitz, R.A. Pielke, Jr., and R. Byerly, Jr. (eds.), Prediction: Science, Decision Making, and the Future of Nature, Island Press, Washington, DC, 41–/57.Google Scholar
  107. Sugawara, H., and Y. Sakai (2003), Electron acceleration in gas by impulse electric field and its application to selective promotion of an electron-molecule reaction, J. Phys. D: Appl. Phys. 36, 1994–2000, DOI: 10.1088/0022-3727/36/16/311.CrossRefGoogle Scholar
  108. Takeuchi, A., B.W.S. Lau, and F.T. Freund (2006), Current and surface potential induced by stress-activated positive holes in igneous rocks, Phys. Chem. Earth 31, 4-9, 240–247.Google Scholar
  109. Terada, T. (1931), On luminous phenomena accompanying earthquakes, Bull. Earthq. Res. Inst. Tokyo Univ. 9, 225–255.Google Scholar
  110. Trakhtengerts, V.Y., D.I. Iudin, A.V. Kulchitsky, and M. Hayakawa, (2003), Electron acceleration by a stochastic electric field in the atmospheric layer, Phys. Plasmas 10, 3290, DOI: 10.1063/1.1584679.CrossRefGoogle Scholar
  111. Tramutoli, V. (1998), Robust AVHRR Techniques (RAT) for environmental monitoring: Theory and applications, EUROPTO Conference on Remote Sensing for Geology, Land Management, and Cultural Heritage III, Barcelona, Spain, September 1998, SPIE 3496.Google Scholar
  112. Tramutoli, V., V. Cuomo, C. Filizzola, N. Pergola, and C. Pietrapertosa (2005), Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (İzmit) earthquake, August 17, 1999, Remote Sens. Environ. 96, 3–4, 409–426, DOI: 10.1016/j.rse.2005.04.006.CrossRefGoogle Scholar
  113. Trigunait, A., M. Parrot, S. Pulinets, and F. Li (2004), Variations of the ionospheric electron density during the Bhuj seismic event, Ann. Geophys. 22, 4123–4131.CrossRefGoogle Scholar
  114. Tronin, A.A. (ed.) (1999), Satellite Thermal Survey Application for Earthquake Prediction, Terra Scientific Publ., Tokyo, 717–746.Google Scholar
  115. Tronin, A.A. (2000), Thermal IR satellite sensor data application for earthquake research in China, Int. J. Remote Sens. 21, 16, 3169–3177, DOI: 10.1080/01431160050145054.CrossRefGoogle Scholar
  116. Tronin, A.A. (2002), Atmosphere-lithosphere coupling: Thermal anomalies on the Earth surface in seismic process. In: M. Hayakawa, and O.A. Molchanov (eds.), Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, Terra Scientific Publ., Tokyo, 173-7173-176.Google Scholar
  117. Tronin, A.A., O.A. Molchanov, and P.F. Biagi (2004), Thermal anomalies and well observations in Kamchatka, Int. J. Remote Sens. 25, 13, 2649–2655, DOI: 10.1080/01431160410001665812.CrossRefGoogle Scholar
  118. Tsukuda, T. (1997), Sizes and some features of luminous sources associated with the 1995 Hyogo-ken Nanbu earthquake, J. Phys. Earth 45, 73–82.Google Scholar
  119. Tsvetkova, T., M. Monnin, I. Nevinsky, and V. Perelygin (2001), Research on variation of radon and gamma-background as a prediction of earthquakes in the Caucasus, Radiat. Meas. 33, 1, 1–5, DOI: 10.1016/S1350-4487(00)00110-4.CrossRefGoogle Scholar
  120. Tuck, G.J., F.D. Stacey, and J. Starkey (1977), A search for the piezoelectric effect in quartz-bearing rock, Tectonophysics 39, 4, 7–11, DOI: 10.1016/0040-1951(77)90148-2.CrossRefGoogle Scholar
  121. Vinet, P., J. Ferrante, J.H. Rose, and J.R. Smith (1987), Compressibility of solids, J. Geophys. Res. 92, B9, 9319–9325, DOI: 10.1029/JB092iB09p09319.CrossRefGoogle Scholar
  122. Walder, J., and A. Nur (1984), Porosity reduction and crustal pore pressure development, J. Geophys. Res. 89, B13, 11,539–511,548.Google Scholar
  123. Wasa, Y., and K. Wadatsumi (2003), Functional strengthening and employment of Macroscopic Anomaly System by e-PISCO ASP, J. Jpn. Soc. Inform. Knowledge 13, 2, 41–47 (in Japanese)Google Scholar
  124. Wendebourg, J., and J.W.D. Ulmer (1992), Modeling compaction and isostatic compensation in SEDSIM for basin analysis and subsurface fluid flow. In: Computer Graphics in Geology, Springer, Berlin/Heidelberg, 41, 143–153, DOI: 10.1007/BFb0117780.CrossRefGoogle Scholar
  125. Willett, J.E. (1987), Gas Chromatography, John Wiley & Sons, London.Google Scholar
  126. Xu, X.D., Z.J. Qiang, and C.G. Dian (1991), Abnormal increase of satellite thermal infrared and ground surface temperature of impending earthquakes, Chinese Sci. Bull. 36, 4, 291–294.Google Scholar
  127. Yasuoka, Y., Y. Kawada, H. Nagahama, Y. Omori, T. Ishikawa, S. Tokonami, and M. Shinogi (2009), Preseismic changes in atmospheric radon concentration and crustal strain, Phys. Chem. Earth 34, 6–7, 431–434, DOI: 10.1016/j.pce.2008.06.005.Google Scholar
  128. Zakharenkova, I.E., I.I. Shagimuratov, and A. Krankowski (2007), Features of the ionosphere behavior before the Kythira 2006 earthquake, Acta Geophys. 55, 4, 524–534, DOI: 10.2478/s11600-007-0031-5.CrossRefGoogle Scholar
  129. Zhao, Y., and F. Qian (1994), Geoelectric precursors to strong earthquakes in China, Tectonophysics , 1–2, 99–113, DOI: 10.1016/0040-1951(94)90223-2.Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  1. 1.NASA Ames Research CenterMoffett FieldUSA
  2. 2.Department of PhysicsSan Jose State UniversitySan JoseUSA
  3. 3.Carl Sagan CenterSETI InstituteMountain ViewUSA

Personalised recommendations