Advertisement

Acta Geophysica

, Volume 57, Issue 4, pp 882–903 | Cite as

Assessment of the hydraulic slope flow approach using a mesoscale model

  • Daniel Martínez
  • Joan Cuxart
Article

Abstract

The simplified hydraulic two-layer model for a katabatic flow is analysed using the outputs from a high-resolution mesoscale simulation. A stably stratified night is simulated for the Duero basin, a complex terrain area located in the northern Spanish plateau, with large vertical and horizontal spatial resolution. Well-defined katabatic flows on the basin slopes are generated by the simulation, that are relatively stationary and quasi-bidimensional for some areas in the central part of the night.

The bulk quantities used in the two-layer approach as well as the different terms in the equations are computed from the three-dimensional information provided by the mesoscale simulation. This method allows to inspect how well the simplified approach represents the katabatic flow generated by the mesoscale model. The study shows that the hydraulic model allows for a comprehensive analysis of the basic mechanisms of the slope flows but is not able to close the budget equations, since the residuals are large.

Key words

katabatic flows Duero basin mesoscale modelling hydraulic two-layer model stable boundary layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, F.K. (1956), The theory of strong katabatic winds, Aust. J. Phys. 9, 373–386.Google Scholar
  2. Bravo, M., T. Mira, M.R. Soler, and J. Cuxart (2008), Intercomparison and evaluation of MM5 and meso-NH mesoscale models in the stable boundary layer, Bound.-Layer Meteor. 128, 77–101, DOI: 10.1007/s10546-008-9269-y.CrossRefGoogle Scholar
  3. Clements, C.B., C.D. Whiteman, and J. D. Horel (2003), Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah, J. Appl. Meteorol. 42, 752–768, DOI: 10.1175/1520-0450(2003)042<0752:CSAEIA>2.0.CO;2.CrossRefGoogle Scholar
  4. Cuxart, J., P. Bougeault, and J.-L. Redelsperger (2000), A turbulence scheme allowing for mesoscale and large-eddy simulations, Quart. J. Roy. Met. Soc. 126, 1–30, DOI: 10.1002/qj.49712656202.CrossRefGoogle Scholar
  5. Cuxart, J., M.A. Jiménez, and D. Martínez (2007), Nocturnal meso-beta and katabatic flows on a midlatitude island, Monthly Weath. Rev. 135, 918–932, DOI: 10.1175/MWR3329.1.CrossRefGoogle Scholar
  6. Doran, J., T.W. Horst, and C.D. Whiteman (1990), The development and structure of nocturnal slope winds in a simple valley, Bound.-Layer Meteor. 52, 41–68, DOI: 10.1007/BF00123177.CrossRefGoogle Scholar
  7. Doran, J., J. Fast, and J. Horel (2002), The VTMX 2000 campaign, Bull. Am. Meteor. Soc. 83, 537–551, DOI: 10.1175/1520-0477(2002)083<0537:TVC>2.3.CO;2.CrossRefGoogle Scholar
  8. Fitzjarrald, D.R. (1984), Katabatic wind in opposing flow, J. Atmos. Sci. 41, 1143–1158, DOI: 10.1175/1520-0469(1984)041<1143:KWIOF>2.0.CO;2.CrossRefGoogle Scholar
  9. Haiden, T. (2003), On the pressure field in the slope wind layer. Notes and correspondence, J. Atmos. Sci. 60, 1632–1635, DOI: 10.1175/1520-0469(2003)60<1632:OTPFIT>2.0.CO;2.CrossRefGoogle Scholar
  10. Haiden, T., and C.D. Whiteman (2005), Katabatic flow mechanisms on a low-angle slope, J. Appl. Meteorol. 44, 113–126, DOI: 10.1175/JAM-2182.1.CrossRefGoogle Scholar
  11. Jiménez, M.A., A. Mira, J. Cuxart, A. Luque, A. Alonso, and J.A. Guijarro (2008), Verification of a clear-sky mesoscale simulation using satellite-derived surface temperatures, Monthly Weath. Rev. 136, 5148–5161, DOI: 10.1175/2008MWR2461.1.CrossRefGoogle Scholar
  12. Kondo, J., and T. Sato (1988), A simple model of drainage flow on a slope, Bound.-Layer Meteor. 43, 103–123, DOI: 10.1007/BF00153975.CrossRefGoogle Scholar
  13. Lafore, J.P., J. Stein, N. Asencio, P. Bougeault, V. Ducrocq, J. Duron, C. Fisher, P. Héreil, P. Mascart, J.P. Pinty, J.-L. Redelsperger, E. Richard, and J. Vilá-Guerau de Arellano (1998), The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulation, Ann. Geophys. 16, 90–109.CrossRefGoogle Scholar
  14. Mahrt, L. (1982), Momentum balance of gravity flows, J. Atmos. Sci. 39, 2701–2711, DOI: 10.1175/1520-0469(1982)039<2701:MBOGF>2.0.CO;2.CrossRefGoogle Scholar
  15. Manins, P.C., and B.L. Sawford (1979a), A model of katabatic winds, J. Atmos. Sci. 36, 619–630, DOI: 10.1175/1520-0469(1979)036<0619:AMOKW>2.0.CO;2.CrossRefGoogle Scholar
  16. Manins, P.C., and B.L. Sawford (1979b), Katabatic winds: A field case study, Quart. J. Roy. Met. Soc. 105, 1011–1025, DOI: 10.1002/qj.49710544618.CrossRefGoogle Scholar
  17. Martínez, D., M.A. Jiménez, J. Cuxart, and L. Mahrt (2009), Heterogeneous nocturnal cooling in a large basin under very stable conditions (submitted to Bound.-Layer Meteor.).Google Scholar
  18. Morcrette, J.-J. (1990), Impact of changes to the radiation transfer parameterizations plus cloud optical. Properties in the ECMWF model, Monthly Weath. Rev. 118, 847–873, DOI: 10.1175/1520-0493(1990)118<0847:IOCTTR>2.0.CO;2.CrossRefGoogle Scholar
  19. Noilhan, J., and S. Planton (1989), A simple parameterization of land surface processes for meteorological models, Monthly Weath. Rev. 117, 536–549, DOI: 10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.CrossRefGoogle Scholar
  20. Renfrew, I.A. (2004), The dynamics of idealized katabatic flow over a moderate slope and ice shelf, Quart. J. Roy. Met. Soc. 130, 1023–1045, DOI: 10.1256/qj.03.24.CrossRefGoogle Scholar
  21. Savage, L.C.I., S. Zhong, W. Yao, W.J.O. Brown, T.W. Horst, and C.D. Whiteman (2008), An observational and numerical study of a regional-scale downslope flow in northern Arizona, J. Geophys. Res. 113, D14114, DOI: 10.1029/2007JD009623.CrossRefGoogle Scholar
  22. Shapiro, A., and E. Fedorovich (2007), Katabatic flows along a differentially cooled sloping surface, J. Fluid. Mech. 571, 149–175, DOI: 10.1017/S0022112006003302.CrossRefGoogle Scholar
  23. Smith, C.M., and E.D. Skyllingstad (2005), Numerical simulation of a katabatic flow with changing slope angle, Monthly Weath. Rev. 133, 3065–3080, DOI: 10.1175/MWR2982.1.CrossRefGoogle Scholar
  24. Zhong, S., and C.D. Whiteman (2008), Downslope flows on a low-angle slope and their interactions with valley inversions. Part II: Numerical modeling, J. Appl. Meteor. Climatol. 47, 2039–2057, DOI: 10.1175/2007JAMC1670.1.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Departament de FísicaUniversitat de les Illes BalearsMallorcaSpain

Personalised recommendations