Acta Geophysica

, Volume 57, Issue 4, pp 950–980 | Cite as

Nocturnal low-level jet over a shallow slope

  • Alan ShapiroEmail author
  • Evgeni Fedorovich


A simple theory is presented for a nocturnal low-level jet (LLJ) over a planar slope. The theory extends the classical inviscid inertial-oscillation model of LLJs to include up- and downslope motion in the boundary layer within a stably stratified environment. The particular scenario considered is typical of LLJs over the Great Plains of the United States: southerly geostrophic wind over terrain that gently slopes down toward the east. First, an initial value problem for the coupled equations of motion and thermodynamic energy is solved for air parcels suddenly freed of a frictional constraint near sunset. The solution is an oscillation that takes, on the hodograph plane, the form of an ellipse having an eastward-oriented major axis and an eccentricity that increases with increasing stratification and slope angle. Next, the notion of a tilted residual layer (TRL) is introduced and used to relate initial (sunset) air parcel buoyancy to free-atmosphere stratification and thermal structure of the boundary layer. Application of the TRL-estimated initial buoyancy in the solution of the initial value problem leads to expressions for peak jet strength and the slope angle that maximizes the jet strength. Analytical results are in reasonable qualitative agreement with observational data.

Key words

low-level jet inertial oscillation planar slope stable stratification residual layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, S. C. (1980), Observational characteristics of the low-level jet at Daly Waters during Project Koorin, Australian Meteor. Mag. 28, 47–56.Google Scholar
  2. Angevine, W.M., A.B. White, and S.K. Avery (1994), Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler, Bound.-Layer Meteor. 68, 375–385, DOI: 10.1007/BF00706797.CrossRefGoogle Scholar
  3. Angevine, W.M., A.W. Grimsdell, S.A. McKeen, and J.M. Warnock (1998), Entrainment results from the Flatland boundary layer experiments, J. Geophys. Res. 103, 13689–13701, DOI: 10.1029/98JD01150.CrossRefGoogle Scholar
  4. Arritt, R.W., T.D. Rink, M. Segal, D.P. Todey, C.A. Clark, M.J. Mitchell, and K.M. Labas (1997), The Great Plains low-level jet during the warm season of 1993, Monthly Weath. Rev. 125, 2176–2192, DOI: 10.1175/1520-0493 (1997)125<2176:TGPLLJ>2.0.CO;2.CrossRefGoogle Scholar
  5. Arya, S.P.S. (1981), Parameterizing the height of the stable atmospheric boundary layer, J. Appl. Meteor. 20, 1192–1202.CrossRefGoogle Scholar
  6. Augustine, J.A., and F. Caracena (1994), Lower-tropospheric precursors to nocturnal MCS development over the central United States, Weather Forecast. 9, 116–135, DOI: 10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.CrossRefGoogle Scholar
  7. Banta, R.M. (2008), Stable-boundary-layer regimes from the perspective of the lowlevel jet, Acta Geophys. 56, 58–87, DOI: 10.2478/s11600-007-0049-8.CrossRefGoogle Scholar
  8. Banta, R.M., C.J. Senff, A.B. White, M. Trainer, R.T. McNider, R.J. Valente, S.D. Mayor, R.J. Alvarez, R.M. Hardesty, D. Parish, and F.C. Fehsenfeld (1998), Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode, J. Geophys. Res. 103, 22519–22544, DOI: 10.1029/98JD01020.CrossRefGoogle Scholar
  9. Banta R.M., R.K. Newsom, J.K. Lundquist, Y.L. Pichugina, R.L. Coulter, and L. Mahrt (2002), Nocturnal low-level jet characteristics over Kansas during CASES-99, Bound.-Layer Meteor. 105, 221–252, DOI: 10.1023/A:1019992330866.CrossRefGoogle Scholar
  10. Banta, R.M., Y.L. Pichugina, N.D. Kelley, B. Jonkman, and W.A. Brewer (2008), Doppler lidar measurements of the Great Plains low-level jet: Applications to wind energy, 14th International Symposium for the Advancement of Boundary Layer Remote Sensing, Iop Conf. Series: Earth And Env. Sci. 1, 012020, DOI: 10.1088/1755-1307/1/1/012020.CrossRefGoogle Scholar
  11. Bao, J.W., S.A. Michelson, P.O.G. Persson, I.V. Djalalova, and J.M. Wilczak (2008), Observed and WRF-simulated low-level winds in a high-ozone episode during the Central California Ozone Study, J. Appl. Meteor. Climatol. 47, 2372–2394, DOI: 10.1175/2008JAMC1822.1.CrossRefGoogle Scholar
  12. Bedard, A.J. (1982), Sources and detection of atmospheric wind shear, AIAA J. 20, 940–945, DOI: 10.2514/3.51152.CrossRefGoogle Scholar
  13. Beyrich, F., and A. Weil (1993), Some aspects of determining the stable boundary layer depth from sodar data, Bound.-Layer Meteor. 63, 97–116, DOI: 10. 1007/BF00705378.CrossRefGoogle Scholar
  14. Blackadar, A.K. (1957), Boundary layer wind maxima and their significance for the growth of nocturnal inversions, Bull. Am. Meteor. Soc. 38, 283–290.Google Scholar
  15. Boers, R., and E.W. Eloranta (1986), Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer, Bound.-Layer Meteor. 34, 357–375, DOI: 10.1007/ BF00120988.CrossRefGoogle Scholar
  16. Bonner, W.D. (1968), Climatology of the low level jet, Monthly Weath. Rev. 96, 833–850, DOI: 10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.CrossRefGoogle Scholar
  17. Bonner, W.D., and J. Paegle (1970), Diurnal variations in boundary layer winds over the south-central United States in summer, Monthly Weath. Rev. 98, 735–744, DOI: 10.1175/1520-0493(1970)098<0735:DVIBLW>2.3.CO;2.CrossRefGoogle Scholar
  18. Bonner, W.D., S. Esbensen, and R. Greenbert (1968), Kinematics of the low-level jet, J. Appl. Meteorol. 7, 339-347, DOI: 10.1175/1520-0450(1968)007<0339:KOTLLJ>2.0.CO;2.Google Scholar
  19. Botnick, A.M., and E. Fedorovich (2008), Large eddy simulation of atmospheric convective boundary layer with realistic environmental forcings. In: J. Meyers et al. (eds.), Quality and Reliability of Large-Eddy Simulations, Springer, Berlin, 193–204.CrossRefGoogle Scholar
  20. Bourke, P.M.A. (1970), Use of weather information in the prediction of plant disease epiphytotics, Annu. Rev. Phytopathol. 8, 345–370, DOI: 10.1146/ Scholar
  21. Brook, R.R. (1985), The Koorin nocturnal low-level jet, Bound.-Layer Meteor. 32, 133–154, DOI: 10.1007/BF00120932.CrossRefGoogle Scholar
  22. Brotak, E.A. (2003), Low-level weather conditions preceding major wildfires, Fire Management Today 63, 67–71.Google Scholar
  23. Brotak, E.A., and W.E. Reifsnyder (2003), Predicting major wildland fire occurrence, Fire Management Today 63, 20–24.Google Scholar
  24. Buajitti, K., and A.K. Blackadar (1957), Theoretical studies of diurnal windstructure variations in the planetary boundary layer, Quart. J. Roy. Met. Soc. 83, 486–500, DOI: 10.1002/qj.49708335804.CrossRefGoogle Scholar
  25. Caughey, S.J. (1982), Observed characteristics of the atmospheric boundary layer, In: F.T.M. Nieuwstadt and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Modelling, D. Reidel Publishing, Dordrecht, 107–158.Google Scholar
  26. Caughey, S.J., and S.G. Palmer (1979), Some aspects of turbulence structure through the depth of the convective boundary layer, Quart. J. Roy. Met. Soc. 105, 811–827, DOI: 10.1002/qj.49710544606.CrossRefGoogle Scholar
  27. Chandler, C., P. Cheney, P. Thomas, L. Trabaud, and D. Williams (1991), Fire in Forestry. Forest Fire Behavior and Effects, Vol. 1, Krieger Publishing Company, Malabar, FL, 441 pp.Google Scholar
  28. Charney, J.J, X. Bian, B.E. Potter, and W.E Heilman (2003), Low level jet impacts on fire evolution in the Mack Lake and other severe wildfires. In: 5th Symposium on Fire and Forest Meteorology, joint with 2nd Int. Wildland Fire Ecology and Fire Management Congress, Am. Meteor. Soc, Orlando, FL.Google Scholar
  29. Cohn, S.A., and W.M. Angevine (2000), Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars, J. Appl. Meteorol. 39, 1233–1247, DOI: 10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2.CrossRefGoogle Scholar
  30. Cole, R.E., S.S. Allan, and D.W. Miller (2000), Vertical wind shear near airports as an aviation hazard. In: 9th Conference on Aviation, Range and Aerospace Meteorology, Am. Meteor. Soc., Orlando, FL. Condie, S.A. (1999), Ocean boundary mixing during Ekman layer arrest, J. Phys. Oceanogr. 29, 2993–3001, DOI: 10.1175/1520-0485(1999)029<2993:OBMDEL>2.0.CO;2.Google Scholar
  31. Corsmeier, U., N. Kalthoff, O. Kolle, M. Kotzian, and F. Fiedler (1997), Ozone concentration jump in the stable nocturnal boundary layer during a LLJ-event, Atmos. Environ. 31, 1977–1989, DOI: 10.1016/S1352-2310(96)00358-5.CrossRefGoogle Scholar
  32. Cosack, N., S. Emeis, and M. Kühn (2007), On the influence of low-level jets on energy production and loading of wind turbines. In: Wind Energy: Proceedings of the Euromech Colloquium, 325–328.Google Scholar
  33. Cotton, W.R., M.S. Lin, R.L. McAnelly, and C.J. Tremback (1989), A composite model of mesoscale convective complexes, Monthly Weath. Rev. 117, 765–783, DOI: 10.1175/1520-0493(1989)117<0765:ACMOMC>2.0.CO;2.CrossRefGoogle Scholar
  34. Cushman-Roisin, B. (1994), Introduction to Geophysical Fluid Dynamics, Prentice Hall, Englewood Cliffs, NJ, 320 pp.Google Scholar
  35. Davies, P.A. (2000), Development and mechanisms of the nocturnal jet, Meteor. Appl. 7, 239–246, DOI: 10.1017/S1350482700001535.CrossRefGoogle Scholar
  36. Dentoni, M.C., G.E. Defossé, J.C. Labraga, and H.F. del Valle (2001), Atmospheric and fuel conditions related to the Puerto Madryn fire of 21 January, 1994, Meteor. Appl. 8, 361–370, DOI: 10.1017/S1350482701003127.CrossRefGoogle Scholar
  37. Drake, V.A. (1985), Radar observations of moths migrating in a nocturnal low-level jet, Ecol. Entomol. 10, 259–265, DOI: 10.1111/j.1365-2311.1985.tb00722.x.CrossRefGoogle Scholar
  38. Drake, V.A., and R.A. Farrow (1988), The influence of atmospheric structure and motions on insect migration, Annu. Rev. Entomol. 33, 183–210, DOI: 10.1146/annurev.en.33.010188.001151.CrossRefGoogle Scholar
  39. Eggers, A.J., R. Digumarthi, and K. Chaney (2003), Wind shear and turbulence effects on rotor fatigue and loads control, J. Sol. Energy Eng. 125, 402–409.CrossRefGoogle Scholar
  40. Fichtl, G.H., and D.W. Camp (1977), Sources of low-level wind shear around airports, J. Aircraft 14, 5–14.CrossRefGoogle Scholar
  41. Galvin, J.F.P. (1999), Forecasting for hot-air balloons and airships in the Midlands of England, Meteor. Appl. 6, 351–362, 10.1017/S1350482799001292.CrossRefGoogle Scholar
  42. Garrett, C. (1991), Marginal mixing theories, Atmos. Ocean 29, 313–339.Google Scholar
  43. Garrett, C., P. MacCready, and P. Rhines (1993), Boundary mixing and arrested Ekman layers: rotating stratified flow near a sloping boundary, Ann. Rev. Fluid Mech. 25, 291–323.CrossRefGoogle Scholar
  44. Grisogono, B., and J. Oerlemans (2001), Katabatic flow: Analytic solution for gradually varying eddy diffusivities, J. Atmos. Sci. 58, 3349–3354, DOI: 10.1175/1520-0469(2001)058<3349:KFASFG>2.0.CO;2.CrossRefGoogle Scholar
  45. Gutman, L.N., and Malbakhov, V.M. (1964), On the theory of katabatic winds of Antarctic, Met. Issled. 9, 150–155 (in Russian).Google Scholar
  46. Hardesty, R.M., C.J. Senff, R.M. Banta, W.A. Brewer, R.J. Alvarez, L.S. Darby, and R.D. Marchbanks (2001), Lidar applications in regional air quality studies. In: Geoscience and Remote Sensing Symposium, 2001. IGARSS '01. IEEE 2001 International 3, 1029–1031.Google Scholar
  47. Higgins, R.W., Y. Yao, E.S. Yaresh, J.E. Janowiak, and K.C. Mo (1997), Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States, J. Climate 10, 481–507.CrossRefGoogle Scholar
  48. Hoecker, W.H. (1963), Three southerly low-level jet systems delineated by the Weather Bureau special pibal network of 1961, Monthly Weath. Rev. 91, 573–582, DOI: 10.1175/1520-0493(1963)091<0573:TSLJSD>2.3.CO;2.CrossRefGoogle Scholar
  49. Holton, J.R. (1967), The diurnal boundary layer wind oscillation above sloping terrain, Tellus 19, 199–205.Google Scholar
  50. Hoxit, L.R. (1975), Diurnal variations in planetary boundary-layer winds over land, Bound.-Layer Meteor. 8, 21–38, DOI: 10.1007/BF02579391.CrossRefGoogle Scholar
  51. Hyun, Y.-K., K.-E. Kim, and K.-J. Ha (2005), A comparison of methods to estimate the height of stable boundary layer over a temperate grassland, Agr. Forest Meteorol. 132, 132–142, DOI: 10.1016/j.agrformet.2005.03.010.CrossRefGoogle Scholar
  52. Izumi, Y., and M.L. Barad (1963), Wind and temperature variations during development of a low-level jet, J. Appl. Meteorol. 2, 668–673, DOI: 10.1175/1520-0450(1963)002<0668:WATVDD>2.0.CO;2.CrossRefGoogle Scholar
  53. Jiang, X., N.C. Lau, I.M. Held, and J.J. Ploshay (2007), Mechanisms of the Great Plains low-level jet as simulated in an AGCM, J. Atmos. Sci. 64, 532–547, DOI: 10.1175/JAS3847.1.CrossRefGoogle Scholar
  54. Johnson, S.J. (1995), Insect migration in North America: synoptic-scale transport in a highly seasonal environment. In: V.A. Drake and A.G. Gatehouse (eds.), Insect Migration: Tracking Resources through Space and Time, University Press, Cambridge, 31–66.Google Scholar
  55. Kaimal, J.C., J.C. Wyngaard, D.A. Haugen, O.R. Coté, Y. Izumi, S.J. Caughey, and C.J. Readings (1976), Turbulence structure in the convective boundary layer. J. Atmos. Sci. 33, 2152–2169, DOI: 10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.CrossRefGoogle Scholar
  56. Kaplan, M.L., Y.-L. Lin, J.J. Charney, K.D. Pfeiffer, D.B. Ensley, D.S. DeCroix and R.P. Weglarz (2000), A terminal area PBL prediction system at Dallas-Fort Worth and its application in simulating diurnal PBL jets, Bull. Am. Meteor. Soc. 81, 2179–2204, DOI: 10.1175/1520-0477(2000)081<2179:ATAPPS>2.3.CO;2.CrossRefGoogle Scholar
  57. Lau, S.Y., and S.T. Chan (2003), A cresent-shaped low-level jet as observed by a Doppler radar, Weather 58, 287–290, DOI: 10.1256/wea.234.02.CrossRefGoogle Scholar
  58. Lettau, H.H., and B. Davidson (eds.), (1957), Exploring the Atmosphere's First Mile, Vols. I and II, Pergamon Press, New York, 578 pp.Google Scholar
  59. Lundquist, J.K. (2003), Intermittent and elliptical inertial oscillations in the atmospheric boundary layer, J. Atmos. Sci. 60, 2661–2673, DOI: 10.1175/1520-0469(2003)060<2661:IAEIOI>2.0.CO;2.CrossRefGoogle Scholar
  60. MacCready, P., and P.B. Rhines (1991), Buoyant inhibition of Ekman transport on a slope and its effect on stratified spin-up, J. Fluid Mech. 223, 631–661, DOI: 10.1017/S0022112091001581.CrossRefGoogle Scholar
  61. MacCready, P., and P.B. Rhines (1993), Slippery bottom boundary layers on a slope, J. Phys. Oceanogr. 23, 5–22, DOI: 10.1175/1520-0485(1993)023<0005:SBBLOA>2.0.CO;2.CrossRefGoogle Scholar
  62. Maddox, R.A. (1980), Mesoscale convective complexes, Bull. Am. Meteor. Soc. 61, 1374–1387, DOI: 10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.CrossRefGoogle Scholar
  63. Mahrt, L., J.C. André, and R.C. Heald (1982), On the depth of the nocturnal boundary layer, J. Appl. Meteorol. 21, 90–92, DOI: 10.1175/1520-0450(1982)021<0090:OTDOTN>2.0.CO;2.CrossRefGoogle Scholar
  64. Mahrt, L. (1999), Stratified atmospheric boundary layers, Bound.-Layer Meteor. 90, 375–396, DOI: 10.1023/A:1001765727956.CrossRefGoogle Scholar
  65. Mamrosh, R.D., T.S. Daniels, and W.R. Moninger (2006), Aviation applications of TAMDAR aircraft data reports. In: 12th Conf. on Aviation, Range and Aerospace Meteor., Am. Meteor. Soc., Atlanta, GA.Google Scholar
  66. McCracken, G.F., E.H. Gillam, J.K. Westbrook, Y.-F. Lee, M.L. Jensen, and B.B. Balsley (2008), Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: links to migratory insect populations, Integr. Comp. Biol. 48, 107–118, DOI: 10.1093/icb/icn033.CrossRefGoogle Scholar
  67. McNider, R.T. (1982), A note on velocity fluctuations in drainage flows, J. Atmos. Sci. 39, 1658–1660, DOI: 10.1175/1520-0469(1982)039<1658:ANOVFI>2.0.CO;2.CrossRefGoogle Scholar
  68. McNider, R.T., and R.A. Pielke (1981), Diurnal boundary-layer development over sloping terrain, J. Atmos. Sci. 38, 2198–2212, DOI: 10.1175/1520-0469 (1981)038<2198:DBLDOS>2.0.CO;2.CrossRefGoogle Scholar
  69. Means, L.L. (1954), A study of the mean southerly wind-maximum in low levels associated with a period of summer precipitation in the middle west, Bull. Am. Meteor. Soc. 35, 166–170.Google Scholar
  70. Membery, D.A. (1983), Low level wind profiles during the Gulf Shamal, Weather 38, 18–24.Google Scholar
  71. Milionis, A.E., and T.D. Davies (2002), Associations between atmospheric temperature inversions and vertical wind profiles: a preliminary assessment, Meteor. Appl. 9, 223–228, DOI: 10.1017/S1350482702002074.CrossRefGoogle Scholar
  72. Mitchell, M.K., R.W. Arritt, and K. Labas (1995), An hourly climatology of the summertime Great Plains low-level jet using wind profiler observations, Weather Forecast. 10, 576–591, DOI: 10.1175/1520-0434(1995)010<0576:ACOTWS>2.0.CO;2.CrossRefGoogle Scholar
  73. Neyland, L.J. (1956), Change without notice, Flying Safety 14, 16–20.Google Scholar
  74. NWS (2007), Southeast US high fire danger weather patterns, National Weather Service Forecast Office, Jackson MS, SEUSFire.php Google Scholar
  75. Pan, Z., M. Segal, and R.W. Arritt (2004), Role of topography in forcing low-level jets in the central United States during the 1993 flood-altered terrain simulations, Monthly Weath. Rev. 132, 396–403, DOI: 10.1175/1520-0493(2004)132<0396:ROTIFL>2.0.CO;2.CrossRefGoogle Scholar
  76. Parish, T.R., A.R. Rodi, and R.D. Clark (1988), A case study of the summertime Great Plains low level jet, Monthly Weath. Rev. 116, 94–105, DOI: 10.1175/1520-0493(1988)116<0094:ACSOTS>2.0.CO;2.CrossRefGoogle Scholar
  77. Pitchford, K.L., and J. London (1962), The low-level jet as related to nocturnal thunderstorms over the Midwest United States, J. Appl. Meteorol. 1, 43–47, DOI: 10.1175/1520-0450(1962)001<0043:TLLJAR>2.0.CO;2.CrossRefGoogle Scholar
  78. Prandtl, L. (1942), Führer durch die Strömungslehre, Vieweg und Sohn, Braunschweig, 382 pp. (in German).Google Scholar
  79. Ramsden, D. (1995), Response of an oceanic bottom boundary layer on a slope to interior flow. Part I: Time-independent interior flow, J. Phys. Oceanogr. 25, 1672–1687, DOI: 10.1175/1520-0485(1995)025<1672:ROAOBB>2.0.CO;2.CrossRefGoogle Scholar
  80. Rao, K.S., and H.F. Snodgrass (1981), A nonstationary nocturnal drainage flow model, Bound.-Layer Meteor. 20, 309–320, DOI: 10.1007/BF00121375CrossRefGoogle Scholar
  81. Rayment, R., and C.J. Readings (1974), A case study of the structure and energetics of an inversion, Quart. J. Roy. Met. Soc. 100, 221–233, DOI: 10.1002/qj.49710042409.CrossRefGoogle Scholar
  82. Readings, C.J., E. Golton, and K.A. Browning (1973), Fine-scale structure and mixing within an inversion, Bound.-Layer Meteor. 4, 275–287, DOI: 10.1007/BF02265238.CrossRefGoogle Scholar
  83. Seaman, N.L., and S.A. Michelson (2000), Mesoscale meteorological structure of a high-ozone episode during the 1995 NARSTO-northeast study, J. Appl. Meteorol. 39, 384–398, DOI: 10.1175/1520-0450(2000)039<0384: MMSOAH>2.0.CO;2.CrossRefGoogle Scholar
  84. Shapiro, A., and E. Fedorovich (2008), Coriolis effects in homogeneous and inhomogeneous katabatic flows, Quart. J. Roy. Met. Soc. 134, 353–370, DOI: 10.1002/qj.217.CrossRefGoogle Scholar
  85. Singh, M.P., R.T. McNider, and J.T. Lin (1993), An analytical study of diurnal wind-structure variations in the boundary layer and the low-level nocturnal jet, Bound.-Layer Meteor. 63, 397–423, DOI: 10.1007/BF00705360.CrossRefGoogle Scholar
  86. Sisterson, D.L., and P. Frenzen (1978), Nocturnal boundary-layer wind maxima and the problem of wind power assessment, Environ. Sci. Technol. 12, 218–221, DOI: 10.1021/es60138a014.CrossRefGoogle Scholar
  87. Slinn, W.G.N. (1982), Estimates for the long-range transport of air pollution, Water, Air Soil Poll. 18, 45–64, DOI: 10.1007/BF02419402.CrossRefGoogle Scholar
  88. Smith, T.B., D.L. Blumenthal, J.A. Anderson, and A.H. Vanderpol (1978), Transport of SO2 in power plant plumes: day and night, Atmos. Environ. 12, 605–611.CrossRefGoogle Scholar
  89. Song, J., K. Liao, R.L. Coulter, and B.M. Lesht (2005), Climatology of the low-level jet at the Southern Great Plains Atmospheric Boundary Layer Experiments site, J. Appl. Meteorol. 44, 1593–1606, 10.1175/JAM2294.1.CrossRefGoogle Scholar
  90. Sorbjan, Z. (1989), Structure of the Atmospheric Boundary Layer, Prentice Hall, Englewood Cliffs, NJ, 317 pp.Google Scholar
  91. Stensrud, D.J., M.H. Jain, K.W. Howard, and R.A. Maddox (1990), Operational systems for observing the lower atmosphere: importance of data sampling and archival procedures, J. Atmos. Oceanic Technol. 7, 930–937.CrossRefGoogle Scholar
  92. Stensrud, D.J. (1996), Importance of low-level jets to climate: A review, J. Climate 9, 1698–1711, DOI: 10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.CrossRefGoogle Scholar
  93. Stommel, H. (1958), The Gulf Stream: A Physical and Dynamical Description, University of California Press, Berkeley, CA, 202 pp.Google Scholar
  94. Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco (2009), Evaluation of the Weather Research and Forecasting model on forecasting low-level jets: implications for wind energy, Wind Energy 12, 81–90, DOI: 10.1002/we.288.CrossRefGoogle Scholar
  95. Stull, R.B. (1988), An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.Google Scholar
  96. Thorpe, S.A. (1987), Current and temperature variability on the continental slope, Phil. Trans. Roy. Soc. Lond. A 323, 471–517, DOI: 10.1098/rsta.1987.0100.CrossRefGoogle Scholar
  97. Thorpe, A.J., and T.H. Guymer (1977), The nocturnal jet, Quart. J. Roy. Met. Soc. 103, 633–653, DOI: 10.1002/qj.49710343809.CrossRefGoogle Scholar
  98. Ting, M., and H. Wang (2006), The role of the North American topography on the maintenance of the Great Plains summer low-level jet, J. Atmos. Sci. 63, 1056–1068, DOI: 10.1175/JAS3664.1.CrossRefGoogle Scholar
  99. Tuttle, J.D., and C.A. Davis (2006), Corridors of warm season precipitation in the central United States, Monthly Weath. Rev. 134, 2297–2317, DOI: 10.1175/MWR3188.1.CrossRefGoogle Scholar
  100. Wallace, J. (1975), Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States, Monthly Weath. Rev. 103, 406–419, DOI: 10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.CrossRefGoogle Scholar
  101. Walters, C.K., and J.A. Winkler (2001), Airflow configurations of warm season southerly low-level wind maxima in the Great Plains. Part I: Spatial and temporal characteristics and relationship to convection, Weather Forecast. 16, 513–530, DOI: 10.1175/1520-0434(2001)016<0513:ACOWSS>2.0.CO;2.CrossRefGoogle Scholar
  102. Walters, C.K., J.A. Winkler, R.P. Shadbolt, J. van Ravensway, and G.D. Bierly (2008), A long-term climatology of southerly and northerly low-level jets for the central United States, Annals Assoc. Amer. Geog. 98, 521–552, DOi: 10.1080/00045600802046387.CrossRefGoogle Scholar
  103. Warren, A., A. Chappell, M.C. Todd, C. Bristow, N. Drake, S. Engelstaedter, V. Martins, S. M'bainayel, and R. Washington (2007), Dust-raising in the dustiest place on earth, Geomorph. 92, 25–37, DOI: 10.1016/j.geomorph. 2007.02.007.CrossRefGoogle Scholar
  104. Washington, R., M.C. Todd, S. Engelstaedter, S. M'bainayel, and F. Mitchell (2006), Dust and the low-level circulation over the BodTlT Depression, Chad: Observations from BoDEx 2005, J. Geophys. Res. 111, D03201, DOI: 10.1029 /2005JD006502.CrossRefGoogle Scholar
  105. Westbrook, J.K., and S.A. Isard (1999), Atmospheric scales of biotic dispersal, Agr. Forest Meteorol., 97, 263–274, DOI: 10.1016/S0168-1923(99)00071-4.CrossRefGoogle Scholar
  106. Wexler, H. (1961), A boundary layer interpretation of the low-level jet, Tellus 13, 368–378.CrossRefGoogle Scholar
  107. Whiteman, C.D., X. Bian, and S. Zhong (1997), Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains, J. Appl. Meteorol. 36, 1363–1376, 10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.CrossRefGoogle Scholar
  108. Wilkerson, W.D. (1991), Dust and sand forecasting in Iraq and adjoining countries, Air Weather Service Technical Note AWS/TN-01/001, Scott Air Force Base, IL, 65 pp.Google Scholar
  109. Wilson, W.E. (1978), Sulfates in the atmosphere: a progress report on Project MISTT, Atmos. Environ. 12, 537–547.CrossRefGoogle Scholar
  110. WMO, (2007), Aviation Hazards, Education and Training Programme, ETR-20. WMO/TD-No. 1390, Secretariat of the World Meteorological Organization, Geneva, Switzerland, 53 pp.Google Scholar
  111. Wolf, W.W, J.K. Westbrook, J. Raulston, S.D. Pair, and S.E. Hobbs (1990), Recent airborne radar observations of migrant pests in the United States, Phil. Trans. Roy. Soc. Lond. B 328, 619–630, DOI: 10.1098/rstb.1990.0132.CrossRefGoogle Scholar
  112. Wood, C.R., J.W. Chapman, D.R. Reynolds, J.F. Barlow, A.D. Smith, and I.P. Woiwod (2006), The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain, Int. J. Biometeorol. 50, 193–204, DOI: 10.1007/s00484-005-0014-7.CrossRefGoogle Scholar
  113. Wu, Y., and S. Raman (1998), The summertime Great Plains low level jet and the effect of its origin on moisture transport, Bound.-Layer Meteor. 88, 445–466, DOI: 10.1023/A:1001518302649.CrossRefGoogle Scholar
  114. Zhong, S., J.D. Fast, and X. Bian (1996), A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model, Monthly Weath. Rev. 124, 785–806, DOI: 10.1175/1520-0493(1996)124<0785:ACSOTG>2.0.CO;2.CrossRefGoogle Scholar
  115. Zhu, M., E.B. Radcliffe, D.W. Ragsdale, I.V. MacRae, and M.W. Seeley (2006), Low-level jet streams associated with spring aphid migration and current season spread of potato viruses in the U.S. northern Great Plains, Agr. Forest Meteorol. 138, 192–202, DOI: 10.1016/j.agrformet.2006.05.001.CrossRefGoogle Scholar
  116. Zilitinkevich, S.S. (1975), Resistance laws and prediction equations for the depth of the planetary boundary layer, J. Atmos. Sci. 32, 741–752, DOI: 10.1175/1520-0469(1975)032<0741:RLAPEF>2.0.CO;2.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.School of MeteorologyUniversity of OklahomaNormanUSA

Personalised recommendations