Advertisement

Acta Geophysica

, Volume 57, Issue 2, pp 509–535 | Cite as

Sublimation-driven evolution of the local radius and the moment of inertia of a long-period comet

  • Beata Dziak-Jankowska
  • Jacek Leliwa-Kopystyński
  • Konrad J. Kossacki
Research Article

Abstract

In this paper we intend to analyze how the sublimation of ice from cometary nuclei affects changes of the moments of inertia. Our aim is to show general trends for different orientations of cometary nucleus’ rotation axis. Thus we apply numerical model of a hypothetical homogeneous and initially spherical nucleus composed of water ice and dust. As an example we present simulations for a model comet of the orbital elements and the nucleus size the same as determined for C/1995 O1 Hale-Bopp, a widely analyzed long-period comet. We calculated water production from the nucleus and changes of the shape (initially spherical) and of the moment of inertia versus time. Simulations are performed for the full range (0–90°) of inclinations I of the rotation axis. The second paramater related to the orientation of the rotation axis is the argument Φ (0–360°). The heat conductivity of the nucleus spans over the vast range, 0.04–4 W m−1 K1.

Key words

comet C/1995 O1 Hale-Bopp sublimation long period comet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biver, N., D. Bockelée-Morvan, P. Colom, J. Crovisier, B. Germain, E. Lellouch, J.K. Davies, W.R.F. Dent, R. Moreno, G. Paubert, J. Wink, D. Despois, D.C. Lis, D. Mehringer, D. Benford, M. Gardner, T.G. Phillips, M. Gunnarsson, H. Rickman, A. Winnberg, P. Bergman, L.E.B. Johansson, and H. Rauer (1999), Long-term evolution of the outgassing of comet Hale-Bopp from radio observations, Earth, Moon and Planets 78, 1-3, 5–11, DOI: 10.1023/A:1006229818484.Google Scholar
  2. Colom, P., E. Gérard, J. Crovisier, D. Bockelée-Morvan, N. Biver, and H. Rauer (1999), Observations of the OH radical in comet C/1995 O1 (Hale-Bopp) with the Nançay radio telescope, Earth, Moon and Planets 78, 1-3, 37–43, DOI: 10.1023/A:1006206924786.Google Scholar
  3. Combi, M.R., A.A. Reinard, J.L. Bertaux, E. Quemerais, and T. Mäkinen (2000), SOHO/SWAN observations of the structure and evolution of the hydrogen Lyman-α coma of comet Hale-Bopp (1995 O1), Icarus 144, 1, 191–202, DOI: 10.1006/icar.1999.6335.CrossRefGoogle Scholar
  4. Crovisier, J., K. Leech, D. Bockelée-Morvan, E. Lellouch, T.Y. Brooke, M.S. Hanner, B. Altieri, H.U. Keller, and T. Lim (1999), The spectrum of comet Hale-Bopp as seen by ISO, ESA SP 427, 137–140.Google Scholar
  5. Dello Ruso, N., M.J. Mumma, M.A. DiSanti, K. Magee-Sauer, R. Novak, and T.W. Rettig (2000), Water production and release in comet C/1995 O1 Hale Bopp, Icarus 143, 2, 324–337, DOI: 10.1006/icar.1999.6268.CrossRefGoogle Scholar
  6. Delsemme, A.H., and D.C. Miller (1971), Physico-chemical phenomena in comets - III. The continuum of comet Burnham (1960 II), Planet. Space Sci. 19, 10, 1229–1257, DOI: 10.1016/0032-0633(71)90180-2.CrossRefGoogle Scholar
  7. Dziak-Jankowska, B., J. Leliwa-Kopystyński, and M. Królikowska (2002), Modelling of shape changes of the nuclei of comets C/1995 O1 Hale-Bopp and 46P/Wirtanen caused by water ice sublimation, Earth, Moon and Planets 90, 1-4, 35–44, DOI: 10.1023/A:1021504115927.CrossRefGoogle Scholar
  8. Efroimsky, M., A. Lazarian, and V. Sidorenko (2002), Complex rotation with internal dissipation. Applications to cosmic-dust alignment and to wobbling comets and asteroids. In: Recent Research Developments in Astrophysics, Research Signpost, India, 64 pp. (invited review).Google Scholar
  9. Enzian, A., H. Cabot, and J. Klinger (1998), Simulation of the water and carbon monoxide production rates of comet Hale-Bopp using a quasi 3-D nucleus model, Planet. Space. Sci. 46, 8, 851–858, DOI: 10.1016/S0032-0633(98)00057-9.CrossRefGoogle Scholar
  10. Groussin, O., M.F. A’Hearn, J.-Y. Li, P.C. Thomas, J.M. Sunshine, C.M. Lisse, K.J. Meech, T.L. Farnham, L.M. Feaga, and W.A. Delamere (2007), Surface temperature of the nucleus of Comet 9P/Tempel 1, Icarus 187, 1, 16–25, DOI: 10.1016/j.icarus.2006.08.030.CrossRefGoogle Scholar
  11. Gutiérrez, P.J., R. Rodrigo, J.L. Ortiz, and B.J.R. Daviddson (2003), An investigation of errors in estimates of the cometary nuclei active area fractions, Astron. Astroph. 401, 2, 755–761, DOI: 10.1051/0004-6361:20030167.CrossRefGoogle Scholar
  12. Gutiérrez, P.J., L. Jorda, N.H. Samarasinha, and P. Lamy (2005), Outgassing-induced effects in the rotational state of comet 67P/Churyumov-Gerasimenko during the Rosetta mission, Planet. Space Sci. 53, 11, 1135–1145, DOI: 10.1016/j.pss.2004.12.012.CrossRefGoogle Scholar
  13. Hale, A., and T. Bopp (1995), International Astronomical Union Circular No. 6187.Google Scholar
  14. Jorda, L., and P. Gutiérrez (2002), Rotational properties of cometary nuclei, Earth, Moon and Planets 89, 1-4, 135–160, DOI: 10.1023/A:1021598404115.Google Scholar
  15. Jorda, L., K. Rembor, J. Lecacheux, P. Colom, F. Colas, E. Frappa, and L.M. Lara (1999), The rotational parameters of Hale-Bopp (C/1995 O1) from observations of the dust jets at Pic du Midi Observatory, Earth, Moon and Planets 77, 3, 167–180, DOI: 10.1023/A:1006234813574.CrossRefGoogle Scholar
  16. Kömle, N.I., G. Kargl, K. Thiel, and K. Seiferlin (1996), Thermal properties of cometary ices and sublimation residua including organics, Planet. Space Sci. 44, 7, 675–689, DOI: 10.1016/j.pss.2004.12.012.CrossRefGoogle Scholar
  17. Królikowska, M. (2004), Long-period comets with non-gravitational effects, Astron. Astrophys. 427, 3, 1117–1126, DOI: 10.1051/0004-6361:20041339.CrossRefGoogle Scholar
  18. Kührt, E. (1999), H2O-activity of comet Hale-Bopp, Space Sci. Rev. 90, 1-2, 75–82, DOI: 10.1023/A:1005229526966.CrossRefGoogle Scholar
  19. Kührt, E. (2002), From Hale-Bopp’s activity to properties of its nucleus, Earth, Moon and Planets 90, 1-4, 61–65, DOI: 10.1023/A:1021560200906.CrossRefGoogle Scholar
  20. Kührt, E., and H.U. Keller (1994), The formation of cometary surface crusts, Icarus 109, 1, 121–132, DOI: 10.1006/icar.1994.1080.CrossRefGoogle Scholar
  21. Licandro, J., L.R. Bellot Rubio, R. Casas, A. Gómez, M.R. Kidger, N. Sabalisk, P. Santos-Sanz, M. Serra-Ricart, R. Torres-Chico, A. Oscoz, L. Jorda, and G. Denicolo (1999), The spin axis position of C/1995 O1 (Hale-Bopp), Earth, Moon and Planets 77, 3, 199–206, DOI: 10.1023/A:1006291015391.CrossRefGoogle Scholar
  22. Marsden, B.G., and G.V. Williams (1997), Catalog of Cometary Orbits, 12th ed., Minor Planet Center, Cambridge, MA.Google Scholar
  23. Morgenthaler, J.P., W.M. Harris, F. Scherb, Ch.M. Anderson, R.J. Oliversen, N.E. Doane, M.R. Combi, M.L. Marconi, and W.H. Smyth (2001), Large-aperture [O I] 6300 Å photometry of comet Hale-Bopp: implications for the photochemistry of OH, Astroph. J. 563, 451–461, DOI: 10.1086/323773CrossRefGoogle Scholar
  24. Nakamura, T., S. Nakano, and Y. Hyakutake (1996), International Astronomical Union Circular No. 6299.Google Scholar
  25. Panale, F.P., and J.R. Salvail (1984), An idealized short-period comet model: surface insolation, H2O flux, dust flux, and mantle evolution, Icarus 60, 3, 476–511, DOI: 10.1016/0019-1035(84)90157-X.CrossRefGoogle Scholar
  26. Prialnik, D. (2002), Modeling the comet nucleus interior. Application to Comet C/1995 O1 Hale-Bopp, Earth, Moon and Planets 89, 1-4, 27–52, DOI: 10.1023/A:1021577915502.Google Scholar
  27. Rodionov, A.V., J.-F. Crifo, K. Szegö, J. Lagerros, and M. Fulle (2002), An advanced physical model of cometary activity, Planet. Space Sci. 50, 10-11, 983–1024, DOI: 10.1016/S0032-0633(02)00047-8.CrossRefGoogle Scholar
  28. Schleicher, D.G., S.M. Lederer, R.L. Millis, and T.L. Farnham (1997), Photometric behavior of Comet Hale-Bopp (C/1995 O1) before perihelion, Science 275, 5308, 1913–1915, DOI: 10.1126/science.275.5308.1913.CrossRefGoogle Scholar
  29. Samarasinha, N.H. (2000), The coma morphology due to an extended active region and the implications for the spin state of comet Hale-Bopp, Astrophys. J. Lett. 529, L107–L110, DOI: 10.1086/312469.CrossRefGoogle Scholar
  30. Samarasinha, N.H., B.E.A. Mueller, M.J.S. Belton, and L. Jorda (2004), Rotation of cometary nuclei. In: M.C. Festou, H.U. Keller, and H.A. Weaver (eds.), Comets II, University of Arizona Press, Tucson, 281–299.Google Scholar
  31. Sekanina, Z. (1981), Rotation and precession of cometary nuclei, Ann. Rev. Earth Planet. Sci. 9, 113–145, DOI: 10.1146/annurev.ea.09.050181.000553).CrossRefGoogle Scholar
  32. Skorov, Yu.V., and H. Rickman (1999), Gas flow and dust acceleration in a cometary Knudsen layer, Planet. Space. Sci. 47, 8-9, 935–949, DOI: 10.1016/S0032-0633(99)00008-2.CrossRefGoogle Scholar
  33. Weaver, H.A., and P.L. Lamy (1999), Estimating the size of Hale-Bopp’s nucleus, Earth, Moon and Planets 79, 1-3, 17–33, DOI: 10.1023/A:1006220930046.Google Scholar
  34. Weaver, H.A., P.D. Feldman, M.F. A’Hearn, C. Arpigny, J.C. Brandt, and S.A. Stern (1999), Post-perihelion HST observations of comet Hale-Bopp (C/1995 O1), Icarus 141, 1, 1–12, DOI: 10.1006/icar.1999.6159.CrossRefGoogle Scholar
  35. Whipple, F.L. (1950), Post-perihelion HST observations of comet Hale-Bopp (C/1995 O1), Astrophys. J. 111, 375–394.CrossRefGoogle Scholar
  36. Woods, T.N., P.D. Feldman, and G.J. Rottman (2000), Ultraviolet observations of Comet Hale-Bopp (C/1995 O1) by the UARS SOLSTICE, Icarus 144, 1, 182–186, DOI: 10.1006/icar.1999.6262.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Beata Dziak-Jankowska
    • 1
  • Jacek Leliwa-Kopystyński
    • 1
    • 2
  • Konrad J. Kossacki
    • 2
  1. 1.Space Research Centre of the Polish Academy of SciencesWarszawaPoland
  2. 2.Institute of GeophysicsUniversity of WarsawWarszawaPoland

Personalised recommendations