Acta Geophysica

, Volume 57, Issue 2, pp 413–434 | Cite as

A study of the interaction among mining-induced seismic events in the Legnica-Głogów Copper District, Poland

  • Beata Orlecka-Sikora
  • Eleftheria E. Papadimitriou
  • Grzegorz Kwiatek
Research Article


We applied the Coulomb stress transfer technique to investigate interactions among seismic events induced by mining works in the Rudna mine in the Legnica-Glogów Copper District in Poland. We considered events with energy greater than 105 J from the period 1993–1999.

We examined the influence of the cumulative static stress changes (ΔCFF) due to previous events on the generation of subsequent ones. The results indicate that in many cases strong mining tremors produce changes in the state of stress of a sufficient magnitude to influence subsequent events. The location of over 60% of events is consistent with stress-enhanced areas where the values of ΔCFF were above 0.01 MPa. For most of the events located inside areas of a calculated negative ΔCFF, their modelled rupture zone was partially located inside stress enhanced area, providing thus additional evidence for possible triggering at the nucleation point.

Key words

Legnica-Głogów Copper District Rudna mine induced seismicity Coulomb stress changes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki, K., and P. Richards (1980), Quantitative Seismology: Theory and Methods, W.H. Freeman, San Francisco.Google Scholar
  2. Andrews, D. (1986), Objective determination of source parameters and similarity of earthquakes of different size. In: S. Das, J. Boatwright and C.H. Scholz (eds.), Earthquakes Source Mechanics, 259–267, AGU, Washington, D.C.Google Scholar
  3. Brune, J.N. (1970), Tectonic stress and spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997–5009, DOI: 10.1029/JB075i026p04997.CrossRefGoogle Scholar
  4. Brune, J.N. (1971), Correction, J. Geophys. Res. 76, 5002, DOI: 10.1029/JB076i020 p05002.CrossRefGoogle Scholar
  5. Chinnery, M.A. (1961), The deformation of the ground around a surface fault, Bull. Seism. Soc. Am. 51, 355–372.Google Scholar
  6. Chinnery, M.A. (1963), The state of stress changes that accompany strike-slip faulting, Bull. Seism. Soc. Am. 53, 921–932.Google Scholar
  7. Das, S., and C.H. Scholz (1981), Theory of time-dependent rupture in the Earth, J. Geophys. Res. 86, B7, 6039–6051, DOI: 10.1029/JB086iB07p06039.CrossRefGoogle Scholar
  8. Deng, J., and L.R. Sykes (1997), Evolution of the stress field in southern California and triggering of moderate-size earthquakes: A 200-year perspective, J. Geophys. Res. 102, B5, 9859–9886, DOI: 10.1029/96JB03897.CrossRefGoogle Scholar
  9. Dománski, B., and S.J. Gibowicz (2008), Comparison of source parameters estimated in the frequency and time domains for seismic events at Rudna copper mine, Poland, Acta Geophys. 56, 324–343, DOI: 10.2478/s11600-008- 0014-1.CrossRefGoogle Scholar
  10. Dománski, B., S.J. Gibowicz, and P. Wiejacz (2002), Source time function of seismic events at Rudna copper mine, Poland, Pure Appl. Geophys. 159, 131–144, DOI: 10.1007/PL00001247.CrossRefGoogle Scholar
  11. Fitch, T.J., D.W. McCowan, and M.W. Shields (1980), Estimation of seismic moment tensor from teleseismic body wave data with application to intraplate and mantle earthquakes, J. Geophys. Res. 85, B7, 3817–3828, DOI: 10.1029/JB085iB07p03817.CrossRefGoogle Scholar
  12. Gibowicz, S.J. (1990), The mechanism of seismic events induced by mining. In: S.J. Gibowicz and S. Lasocki (eds.), Rockburst and Seismicity in Mines, 3–27, A.A. Balkema, Rotterdam.Google Scholar
  13. Gibowicz, S.J. (1997), An anatomy of a seismic sequence in a deep gold mine, Pure Appl. Geophys. 150, 393–414, DOI: 10.1007/s000240050084.CrossRefGoogle Scholar
  14. Gibowicz, S.J. (2006), Seismic doublets and multiplets at the Polish coal and copper mines, Acta Geophys. 54, 142–157, DOI 10.2478/s11600-006-0014-y.CrossRefGoogle Scholar
  15. Gibowicz, S.J., and A. Kijko (1994), An Introduction to Mining Seismology, Academic Press, San Diego.Google Scholar
  16. Gibowicz, S.J., and S. Lasocki (2001), Seismicity induced by mining: Ten years later, Advances in Geophysics 44, 39–181.Google Scholar
  17. Harris, R.A. (1998), Introduction to special session: Stress triggers, stress shadows, and implications for seismic hazard, J. Geophys. Res. 103, B10, 24347–24358, DOI: 10.1029/98JB01576.CrossRefGoogle Scholar
  18. Harris, R.A., and R.W. Simpson (1996), In the shadow of 1857: The effect of the great Ft. Tejon earthquakes in southern California, Geophys. Res. Lett. 23, 229–232, DOI: 10.1029/96GL00015.CrossRefGoogle Scholar
  19. Haskell, N.A. (1953), The dispersion of surface waves in multilayered media, Bull. Seismol. Soc. Am., 43, 17–34.Google Scholar
  20. Hudnut, K.W., Y. Bock, M. Cline, P. Fang, Y. Feng, J. Freymueller, X. Ge, W.K. Gross, D. Jackson, M. Kim, N.E. King, J. Langbein, S.C. Larsen, M. Lisowski, Z.K. Shen, J. Svarc, and J. Zhang (1994), Co-seismic displacements of the 1992 Landers earthquake, Bull. Seismol. Soc. Am. 84, 625–645.Google Scholar
  21. Idziak, A., G. Sagan, and W.M. Zuberek (1991), The analysis of energy distribution of seismic events from the Upper Silesian Coal Basin, Publs. Inst. Geophys. Pol. Acad. Sc. M-15 (235), 163–182 (in Polish).Google Scholar
  22. Jaeger, J.C., and N.G.W. Cook (1979), Fundamentals of Rock Mechanics, 3rd ed., Chapman and Hall, London.Google Scholar
  23. Kijko, A. (1997), Keynote lecture: Seismic hazard assessment in mines. In: S.J. Gibowicz and S. Lasocki (eds.), Rockbursts and Seismicity in Mines, 247–256, A.A. Balkema, Rotterdam.Google Scholar
  24. Kijko, A., M.M. Dessokey, E. Glowacka, and M. Kazimierczyk (1982), Periodicity of strong mining tremors in the Lubin copper mine, Acta Geophys. Pol. 30, 221–230.Google Scholar
  25. Kijko, A., B. Drzezla, and A. Mendecki (1985), Why the extremal seismic events distribution have the bimodal character? Acta Montana 71, 225–244 (in Polish).Google Scholar
  26. Kijko, A., B. Drzezla, and T. Stankiewicz, (1987), Bimodal character of extreme seismic events in Polish mines, Acta Geophys. Pol. 35, 157–166.Google Scholar
  27. King, G.C.P., and M. Cocco (2001), Fault interaction by elastic stress changes: New clues from earthquake sequences, Adv. Geophys. 44, 1–38.Google Scholar
  28. King, G.C.P., R.S. Stein, and J. Lin (1994), Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am. 84, 935–953.Google Scholar
  29. Kleczek, Z. (2007), Control of rock-mass bursts in Polish Copper Mines LGCD. In: Warsztaty Górnicze 2007 “dZagrożenia naturalne w górnictwie”, Ślesin k. Konina, 4-6 czerwca 2007. Bezp. Pr. Ochr. Śr. Gór. 2007 nr 6, 25–27 (in Polish).Google Scholar
  30. Lasocki, S. (1992a), Non-Poissonian structure of mining induced seismicity, Acta Montana 84, 51–58.Google Scholar
  31. Lasocki, S. (1992b), Weibull distribution for time intervals between mining tremors, Publs. Inst. Geophys. Pol. Acad. Sc.. M-16 (245), 241–260.Google Scholar
  32. Lasocki, S. (2001), Quantitative evidences of complexity of magnitude distribution in mining-induced seismicity: Implications for hazard evaluation. In: G. van Aswegen, R.J. Durrheim and W.D. Ortlepp (eds.), The Fifth Int. Symp. on Rockbursts and Seismicity in Mines (RaSiM 5) ‘Dynamic rock mass response to mining’, 543–550, South African Institute of Mining and Metallurgy, Johannesburg.Google Scholar
  33. Lasocki, S. (2005), Probabilistic analysis of seismic hazard posed by mining induced events. In: Y. Potvin and M. Hudyma (eds.), The Sixth Int. Symp. on Rockbursts and Seismicity in Mines `Controlling on Seismic Risk’ ACG, Perth, 151–156.Google Scholar
  34. Lésniak, A., and G. Pszczoła (2008), Combined mine tremors source location and error evaluation in the Lubin Copper Mine (Poland), Tectonophysics 456, 16–27, DOI: 10.1016/j.tecto.2007.04.012.CrossRefGoogle Scholar
  35. Lin, J., and R.S. Stein (2004), Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults, J. Geophys. Res. 109, B02303, DOI: 10.1029/2003JB 002607.CrossRefGoogle Scholar
  36. Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seismol. Soc. Am. 66, 639–666.Google Scholar
  37. Marcak, H. (1985), Geophysical models of development of destruction process in the rock mass prior to rockburst, Publs. Inst. Geophys. Pol. Acad. Sc. M-6 (176), 149–174 (in Polish).Google Scholar
  38. Marsan, D., Ch.J. Bean, S. Steacy, and J. McCloskey (1999), Spatio-temporal analysis of stress diffusion in mining-induced seismicity system, Geophys. Res. Lett. 26, 3697–3700, DOI: 10.1029/1999GL010829.CrossRefGoogle Scholar
  39. McGarr, A., and D.W. Simpson (1997), Keynote lecture: A broad look at induced seismicity. In: S.J. Gibowicz and S. Lasocki (eds.), Rockbursts and Seismicity in Mines, 385–396, A.A. Balkema, Rotterdam.Google Scholar
  40. Okada, Y. (1985), Surface deformation due to shear and tensile faults in a halfspace, Bull. Seism. Soc. Am. 75, 1135–1154.Google Scholar
  41. Okada, Y. (1992), Internal deformation due to shear and tensile faults in a halfspace. Bull. Seism. Soc. Am. 82, 1018–1040.Google Scholar
  42. Orlecka-Sikora, B., and S. Lasocki (2002), Clustered structure of seismicity from the Legnica-Głogów copper district, Publs. Inst. Geophys. Pol. Acad. Sc. M-24 (340), 105–119 (in Polish).Google Scholar
  43. Papadimitriou, E.E., and L.R. Sykes (2001), Evolution of the stress field in the northern Aegean Sea (Greece), Geophys. J. Int. 146, 747–759, DOI: 10.1046/j.0956-540x.2001.01486.x.CrossRefGoogle Scholar
  44. Parsons, T., R.S. Stein, R.W. Simpson, and P.A. Reasenberg (1999), Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults, J. Geophys. Res. 104, B9, 20183–20202, DOI: 10.1029/ 1999JB900056.CrossRefGoogle Scholar
  45. Piestrzyński, A. (1996), Monograph of KGHM Polska Miedź SA, CBPM “Cuprum”, Wrocław (in Polish).Google Scholar
  46. Reasenberg, P.A., and R.W. Simpson (1992), Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science 255, 1687–1690.CrossRefGoogle Scholar
  47. Scholz, C.H. (1990), The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge.Google Scholar
  48. Snoke, J.A. (1987), Stable determination of (Brune) stress drops, Bull. Seismol. Soc. Am. 77, 530–538.Google Scholar
  49. Steacy, S., J. Gomberg, and M. Cocco (2005), Introduction to special section: Stress transfer, earthquake triggering and time-dependent seismic hazard, J. Geophys. Res. 110, DOI: 10.1029/2005JB003692.Google Scholar
  50. Stein, R.S., and M. Lisowski (1983, The 1979 Homestead Valley earthquake sequence, California: Control of aftershocks and postseismic deformation, J. Geophys. Res. 88, B8, 6477–6490, DOI: 10.1029/JB088iB08p06477.CrossRefGoogle Scholar
  51. Stein, R.S., G.L.P. King, and J. Lin (1992), Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude = 7.4 Landers earthquake, Science 258, 1328–1332, DOI: 10.1126/science.258.5086.1328.CrossRefGoogle Scholar
  52. Steketee, J.A. (1958a), On Volterra’s dislocations in a semi-infinite elastic medium, Can. J. Phys. 36, 193–205.Google Scholar
  53. Steketee, J.A. (1958b), Some geophysical applications of the elasticity theory of dislocations, Can. J. Phys. 36, 1168–1198.Google Scholar
  54. Toda, S., R.S. Stein, K. Richards-Dinger, and S. Bozkurt (2005), Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer, J. Geophys. Res. B05S16, DOI: 10.1029/ 2004JB003415.Google Scholar
  55. Trifu, C.-I., T.I. Urbancic, and R.P. Young (1993), Non-similar frequency-magnitude distribution for M < 1 seismicity, Geophys. Res. Lett. 20, 6, 427–430, DOI: 10.1029/93GL00426.CrossRefGoogle Scholar
  56. Wiejacz, P. (1991), Investigation of focal mechanisms of mine tremors by the moment tensor inversion, Ph.D. Thesis, Inst. Geophys. Pol. Acad. Sc., Warsaw, Poland.Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Beata Orlecka-Sikora
    • 1
  • Eleftheria E. Papadimitriou
    • 2
  • Grzegorz Kwiatek
    • 3
  1. 1.Faculty of Geology Geophysics and Environmental ProtectionAGH University of Science and TechnologyKrakówPoland
  2. 2.Department of GeophysicsUniversity of ThessalonikiThessalonikiGreece
  3. 3.GeoForschungsZentrum PotsdamDept. 3.2 Deformation and RheologyPotsdamGermany

Personalised recommendations