Acta Geophysica

, Volume 57, Issue 1, pp 52–63 | Cite as

Flare forecasting based on sunspot-groups characteristics

  • Lidia Contarino
  • Francesca ZuccarelloEmail author
  • Paolo Romano
  • Daniele Spadaro
  • Salvatore L. Guglielmino
  • Viviana Battiato


Our comprehension of solar flares is still lacking in many aspects and the possibility of observing active regions during the first phases of flare occurrence is limited by our capability of doing accurate flare forecasting. In order to give a contribution to this aspect, we focused our attention on the characteristics that must be fulfilled by sunspot-groups in order to be flare-productive. We addressed this problem using a statistical approach: first, we analyzed sunspot-groups parameters (i.e., Zürich class, magnetic configuration, area, morphology of the penumbra) and evolution; then, we performed a flare forecasting campaign, based on the results obtained in the first phase and on real-time observations. The results obtained by comparing the flare forecasting probability with the number of flares that have actually occurred are quite encouraging; we plan to improve this procedure by including a bigger statistical sampling.

Key words

solar flares sunspot-groups flare forecasting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antiochos, S.K., C.R. DeVore, and J.A. Klimchuk (1999), A model for solar coronal mass ejections, Astrophys. J. 510, 1, 485–493, DOI: 10.1086/306563.CrossRefGoogle Scholar
  2. Aulanier, G., E.E. DeLuca, S.K. Antiochos, R.A. McMullen, and L. Golub (2000), The topology and evolution of the Bastille Day flare, Astrophys. J. 540, 2, 1126–1142, DOI: 10.1086/309376.CrossRefGoogle Scholar
  3. Canfield, R.C., H.S. Hudson, and D.E. McKenzie (1999), Sigmoidal morphology and eruptive solar activity, Geophys. Res. Lett. 26, 6, 627–630, DOI: 10.1029/1999GL900105.CrossRefGoogle Scholar
  4. Carmichael, H. (1964), A process for flares, In: W.N. Hess (ed.), Proc. AAS-NASA Symp. “The Physics of Solar Flares”, Washington, NASA, Science and Technical Information Division, 50, 451–456.Google Scholar
  5. Chae, J. (2001), Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of field line footpoints, Astrophys. J. 560, 1, L95–L98, DOI: 10.1086/324173.CrossRefGoogle Scholar
  6. Démoulin, P., C.H. Mandrini, L. Van Driel-Gesztely, M.C. Lopez Fuentes, and G. Aulanier (2002), The magnetic helicity injected by shearing motions, Solar Phys. 207, 1, 87–110, DOI: 10.1023/A:1015531804337.CrossRefGoogle Scholar
  7. Falconer, D., R. Moore, and A. Gray (2007), Forecasting solar coronal mass ejections from MDI magnetograms, American Astronomical Society Meeting 210, 2702.Google Scholar
  8. Forbes, T.G., and E.R. Priest (1995), Photospheric magnetic field evolution and eruptive flares, Astrophys. J. 446, 377–389, DOI: 10.1086/175797.CrossRefGoogle Scholar
  9. Gaizauskas, V., K.L. Harvey, J.W. Harvey, and C. Zwaan (1983), Large-scale patterns formed by solar active regions during the ascending phase of cycle 21, Astrophys. J. 265, 1056–1065, DOI: 10.1086/160747.CrossRefGoogle Scholar
  10. Gallagher, P.T., Y.-J. Moon, and H. Wang (2002), Active-region monitoring and flare forecasting. I. Data processing and first results, Solar Phys. 209, 1, 171–183, DOI: 10.1023/A:1020950221179.CrossRefGoogle Scholar
  11. Georgoulis, M.K., and D.M. Rust (2007), Quantitative forecasting of major solar flares, Astrophys. J. 661, 1, L109–L112, DOI: 10.1086/518718.CrossRefGoogle Scholar
  12. Hagyard, M.J., J.B. SmithJr., D. Teuber, and E.A. West (1984), A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring, Solar Phys. 91, 1, 115–126, DOI: 10.1007/BF00213618.CrossRefGoogle Scholar
  13. Heyvaerts, J., E.R. Priest, and D.M. Rust (1977), An emerging flux model for the solar flare phenomenon, Astrophys. J. 216, 123–137, DOI: 10.1086/155453.CrossRefGoogle Scholar
  14. Hirayama, T. (1974), Theoretical model of flares and prominences. I: Evaporating flare model, Solar Phys. 34, 2, 323–338, DOI: 10.1007/BF00153671.CrossRefGoogle Scholar
  15. Hirose, S., Y. Uchida, S. Uemura, T. Yamaguchi, and S.B. Cable (2001), A quadruple magnetic source model for arcade flares and X-ray arcade formations outside active regions. II. Dark filament eruption and the associated arcade flare, Astrophys. J. 551, 1, 586–596, DOI: 10.1086/320084.CrossRefGoogle Scholar
  16. Jing, J., H. Song, V. Abramenko, C. Tan, and H. Wang (2006), The statistical relationship between the photospheric magnetic parameters and the flare productivity of active regions, Astrophys. J. 644, 2, 1273–1277, DOI: 10.1086/503895.CrossRefGoogle Scholar
  17. Keil, S.L., K.S. Balasubramaniam, L.J. Milano, A. Bayliss, J. Jones, and J. Clark (1999), Dynamical motions as precursors to activity. In: T.R. Rimmele, K.S. Balasubramaniam, and R.R. Radick (eds.), High Resolution Solar Physics: Theory, Observations, and Techniques, ASP Conf. Ser. 183, 540–550.Google Scholar
  18. Kopp, R.A., and G.W. Pneuman (1976), Magnetic reconnection in the corona and the loop prominence phenomenon, Solar Phys. 50, 1, 85–98, DOI: 10.1007/BF00206193.CrossRefGoogle Scholar
  19. Leka, K.D., R.C. Canfield, A.N. McClymont, and L. van Driel-Gesztely (1996), Evidence for current-carrying emerging flux, Astrophys. J. 462, 547–560, DOI: 10.1086/177171.CrossRefGoogle Scholar
  20. Masuda, S., T. Kosugi, H. Hara, S. Tsuneta, and Y. Ogawara (1994), A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection, Nature 371, 6497, 495–497, DOI: 10.1038/371495a0.CrossRefGoogle Scholar
  21. Melrose, D.B. (1997), A solar flare model based on magnetic reconnection between current-carrying loops, Astrophys. J. 486, 521–533, DOI: 10.1086/ 304521.CrossRefGoogle Scholar
  22. Priest, E.R., and T.G. Forbes (2000), Magnetic Reconnection: MHD Theory and Applications, Cambridge University Press, Cambridge.Google Scholar
  23. Priest, E.R., and T.G. Forbes (2002), The magnetic nature of solar flares, Astron. Astrophys. Rev. 10, 4, 313–377, DOI: 10.1007/s001590100013.CrossRefGoogle Scholar
  24. Romano, P., F. Zuccarello, and L. Contarino (2005), Observational evidence of the primary role played by photospheric motions in magnetic helicity transport before a filament eruption, Astron. Astrophys. 433, 2, 683–690, DOI: 10.1051/0004-6361:20041807.CrossRefGoogle Scholar
  25. Soru-Escaut I., M.J. Martres, and Z. Mouradian (1985), Singularity of solar rotation and flare productivity, Astron. Astrophys. 145, 19–24.Google Scholar
  26. Stanek, W. (1972), Periodicities in the longitude distribution of sunspots, Solar Phys. 27, 1, 89–106, DOI: 10.1007/BF00151773.CrossRefGoogle Scholar
  27. Sturrock, P.A. (1966), Model of the high-energy phase of solar flares, Nature 211, 5050, 695–697, DOI: 10.1038/211695a0.CrossRefGoogle Scholar
  28. Tanaka, K., and Y. Nakagawa (1973), Force-free magnetic fields and flares of August 1972, Solar Phys. 33, 1, 187–204, DOI: 10.1007/BF00152390.CrossRefGoogle Scholar
  29. Tandberg-Hanssen, E., and A.G. Emslie (1988), The Physics of Solar Flares, Cambridge University Press, Cambridge, 177 pp.Google Scholar
  30. Ternullo, M., L. Contarino, P. Romano, and F. Zuccarello (2006), A statistical analysis of sunspot groups hosting M and X flares, Astron. Nachr. 327, 1, 36–43, DOI: 10.1002/asna.200510485.CrossRefGoogle Scholar
  31. Tsuneta, S., H. Hara, T. Shimizu, L.W. Acton, K.T. Strong, H.S. Hudson, and Y. Ogawara (1992), Observation of a solar flare at the limb with the YOHKOH Soft X-ray Telescope, Publs. Astron. Soc. Japan 44, 5, L63–L69.Google Scholar
  32. Wheatland, M.S. (2001), Rates of flaring in individual active regions, Solar Phys. 203, 1, 87–106, DOI: 10.1023/A:1012749706764.CrossRefGoogle Scholar
  33. Zirin, H. (1998), The Astrophysics of the Sun, Cambridge University Press, Cambridge, 198 pp.Google Scholar
  34. Zuccarello, F. (1992), Peculiar photospheric velocity fields and magnetic energy build-up, Astron. Astrophys. 257, 298–306.Google Scholar
  35. Zuccarello, F., V. Battiato, L. Contarino, P. Romano, and D. Spadaro (2007), Plasma motions in a short-lived filament related to a magnetic flux cancellation, Astron. Astrophys. 468, 1, 299–305, DOI: 10.1051/0004-6361:20066556.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lidia Contarino
    • 1
  • Francesca Zuccarello
    • 2
    Email author
  • Paolo Romano
    • 1
  • Daniele Spadaro
    • 1
  • Salvatore L. Guglielmino
    • 2
  • Viviana Battiato
    • 2
  1. 1.INAF Osservatorio Astrofisico di CataniaCataniaItaly
  2. 2.Dipartimento di Fisica e AstronomiaUniversitá di CataniaCataniaItaly

Personalised recommendations