Advertisement

Acta Geophysica

, Volume 57, Issue 1, pp 209–219 | Cite as

A review of progress in modelling of induced geoelectric and geomagnetic fields with special regard to induced currents

  • Alan W.P. Thomson
  • Allan J. McKay
  • Ari Viljanen
Article

Abstract

The Earth’s lithosphere and mantle respond to Space Weather through time-varying, depth-dependent induced magnetic and electric fields. Understanding the properties of these electromagnetic fields is a key consideration in modelling the hazard to technological systems from Space Weather. In this paper we review current understanding of these fields, in terms of regional and global-scale geology and geophysics. We highlight progress towards integrated European-scale models of geomagnetic and geoelectric fields, specifically for the purposes of modelling geomagnetically induced currents in power grids and pipelines.

Key words

global conductivity models geoelectric fields geomagnetic fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amm, O. (1997), Ionospheric elementary current systems in spherical coordinates and their application, J. Geomagn. Geoelectr. 49, 7, 947–955.Google Scholar
  2. Avdeev, D.B., A.V. Kuvshinov, O.V. Pankratov, and O. Newman (2002), Three dimensional induction logging problems. Part 1: An integral equation solution and model comparisons, Geophysics 67, 2, 413–426, DOI: 10.1190/1.1468601.CrossRefGoogle Scholar
  3. Beamish, D., T.D.G. Clark, E. Clarke, and A.W.P. Thomson (2002), Geomagnetically induced currents in the UK: geomagnetic variations and surface electric fields, J. Atmos. Sol.-Terr. Phys. 64, 1779–1792, DOI: 10.1016/S1364-6826(02)00127-X.CrossRefGoogle Scholar
  4. Boteler, D.H. (2001), Assessment of geomagnetic hazard to power systems in Canada, Nat. Hazards 23, 2/3, 101–120, DOI: 10.1023/A:1011194414259.CrossRefGoogle Scholar
  5. Boteler, D., and R.J. Pirjola (1998), The complex-image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet, Geophys. J. Int. 132, 31–40, DOI: 10.1046/j.1365-246x.1998.00388.x.CrossRefGoogle Scholar
  6. Engels, M., T. Korja, and the BEAR Working Group (2002), Multisheet modelling of the electrical conductivity structure in the Fennoscandian Shield, Earth Planets Space 54, 559–573.Google Scholar
  7. Everett, M.E., S. Constable, and C.G. Constable (2003), Effects of near-surface conductance on global satellite induction responses, Geophys. J. Int. 153, 1, 277–286, DOI: 10.1046/j.1365-246X.2003.01906.x.CrossRefGoogle Scholar
  8. Ferguson, I.J., J.A. Craven, R.D. Kurtz, D.C. Boerner, R.C. Bailey, X. Wu, M.R. Orellana, J. Spratt, G. Wennberg, and A. Norton (2005), Geoelectric response of Archean lithosphere in the western Superior Province, central Canada, Phys. Earth Planet. Int. 150, 123–143, DOI: 10.1016/j.pepi.2004.08.025.CrossRefGoogle Scholar
  9. Fernberg, P.A., C. Samson, D.H. Boteler, L. Trichtchenko, and P. Larocca (2007), Earth conductivity structures and their effects on geomagnetic induction in pipelines, Ann. Geophys. 25, 207–218.Google Scholar
  10. Gleisner, H., and H. Lundstedt (2001a), A neural network-based local model for prediction of geomagnetic disturbances, J. Geophys. Res. 106, 8425–8434, DOI: 10.1029/2000JA900142.CrossRefGoogle Scholar
  11. Gleisner, H., and H. Lundstedt (2001b), Auroral electrojet predictions with dynamic neural networks, J. Geophys. Res. 106, 24541–24550, DOI: 10.1029/2001JA900046.CrossRefGoogle Scholar
  12. Haak, V. (1985), Anomalies of the electrical conductivity in the Earth’s crust and upper Mantle. In: K. Fuchs and H. Soffel (eds.), Geophysics of the Solid Earth, the Moon and the Planets, Landolt-Börnstein, Group V: Geophysics, vol. 2b, 397–436, Springer-Verlag, Berlin, DOI: 10.1007/b20011.Google Scholar
  13. Hjelt, S.E. (1988), Regional EM studies in the 80’s, Surv. Geophys. 9, 349–387.CrossRefGoogle Scholar
  14. Korja, T. (2007), How is the European lithosphere imaged by magnetotellurics? Surv. Geophys. 28, 2–3, 239–272, DOI: 10.1007/s10712-007-9024-9.CrossRefGoogle Scholar
  15. Korja, T., M. Engels, A.A. Zhamaletdinov, A.A. Kovtun, N.A. Palshin, M.Y. Smirnov, A.D. Tokarev, V.E. Asming, L.L. Vanyan, I.L. Vardaniants, and the BEAR Working Group (2002), Crustal conductivity in Fennoscandia — a compilation of a databse on crustal conductance in the Fennoscandian Shield, Earth Planets Space 54, 535–558.Google Scholar
  16. Kuvshinov, A. (2007), Global 3-D EM induction in the solid Earth and the oceans. In: V. Spichak (ed.), Electromagnetic Sounding of the Earth’s Interior, 4–24, Elsevier, Amsterdam.Google Scholar
  17. Kuvshinov, A., and N. Olsen (2006), A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted and SAC-C magnetic data, Geophys. Res. Lett. 33, L18301, DOI: 10.1029/2006GL027083.CrossRefGoogle Scholar
  18. Kuvshinov, A., T. Sabaka, and N. Olsen (2006), 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anoamlies in the Earth’s mantle, Earth Planets Space 58, 417–427.Google Scholar
  19. Laske, G., and G. Masters (1997), A global digital map of sediment thickness, EOS Trans. AGU, Fall Meeting Suppl. 78, F483.Google Scholar
  20. Lehtinen, M., and R. Pirjola (1985), Currents produced in earthed conductor networks by geomagnetically induced currents, Ann. Geophys. 3, 4, 479–484.Google Scholar
  21. McKay, A.J., and K.A. Whaler (2006), The electric field in northern England and southern Scotland: implications for geomagnetically induced currents, Geophys. J. Int. 167, 2, 613–625, DOI: 10.1111/j.1365-246X.2006.03128.x.CrossRefGoogle Scholar
  22. Olsen, N., and A. Kuvshinov (2004), Modelling the ocean effect of geomagnetic storms, Earth Planets Space 56, 525–530.Google Scholar
  23. Pulkkinen, A., and M. Engels (2005), The role of 3D geomagnetic induction in the determination of the ionospheric currents from ground-based data, Ann. Geophys. 23, 909–917.Google Scholar
  24. Pulkkinen, A., and A. Viljanen (2007), The complex spatiotemporal dynamics of ionospheric currents. In: J. Lilensten (ed.), Space Weather: Research Towards Application in Europe, Series: Astrophysics and Space Science Library, vol. 344, 332 pp.Google Scholar
  25. Pulkkinen, A., R. Pirjola, D. Boteler, A. Viljanen, and I. Yegorov (2001), Modelling of space weather effects on pipelines, J. Appl. Geophys. 48, 4, 233–256, DOI: 10.1016/S0926-9851(01)00109-4.CrossRefGoogle Scholar
  26. Pulkkinen, A., O. Amm, A. Viljanen, and the BEAR Working Group (2003a), Ionospheric equivalent current distributions determined with the method of spherical elementary current systems, J. Geophys. Res. 108, A2, 1053, DOI: 10.1029/2001JA005085.CrossRefGoogle Scholar
  27. Pulkkinen, A., O. Amm, A. Viljanen, and the BEAR Working Group (2003b), Separation of the geomagnetic variation field into parts of external and internal parts using the spherical elecmenatry currents system method, Earth Planets Space 55, 117–129.Google Scholar
  28. Pulkkinen, A., S. Lindahl, A. Viljanen, and P. Pirjola (2005), Geomagnetic storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system, Space Weather 3, 8, S08C03, DOI: 10.1029/2004SW000123.CrossRefGoogle Scholar
  29. Pulkkinen, A., A. Viljanen, and P. Pirjola (2007), Determination of ground conductivity and system parameters for optimal modeling of geomagnetically induced current flow in technological systems, Earth Planets Space 99, 999–1006.Google Scholar
  30. Purucker, M.E. (2007), Magnetic anomaly map of the world, EOS Trans. AGU 88, 25, 263, DOI: 10.1029/2007EO250003.CrossRefGoogle Scholar
  31. Schwarz, G. (1990), Electrical conductivity of the Earth’s crust and upper mantle, Surv. Geophys. 11, 2–3, 133–161, DOI: 10.1007/BF01901658.CrossRefGoogle Scholar
  32. Semenov, V.Yu., and W. Jóźwiak (1999), Model of the geoelectrical structure of the mid- and lower mantle in the Europe-Asia region, Geophys. J. Int. 138, 2, 549–552, DOI: 10.1046/j.1365-246X.1999.00888.x.CrossRefGoogle Scholar
  33. Thomson, A.W.P., A.J. McKay, E. Clarke, and S.J. Reay (2005), Surface electric fields and geomagnetically induced currents in the Scottish Power grid during the 30 October 2003 geomagnetic storm, Space Weather 3, 11, S11002, DOI: 10.1029/2005SW000156.CrossRefGoogle Scholar
  34. Vanhamaki, H., O. Amm, and A. Viljanen (2003), One-dimensional upward continuation of the ground magnetic field disturbance using spherical elementary current systems, Earth Planets Space 55, 613–625.Google Scholar
  35. Viljanen, A., O. Amm, and R. Pirjola (1999), Modelling geomagnetically induced currents during different ionospheric situations, J. Geophys. Res. 104, 28,059–28,071, DOI: 10.1029/1999JA900337.CrossRefGoogle Scholar
  36. Viljanen, A., A. Pulkkinen, O. Amm, R. Pirjola, T. Korja and BEAR Working Group (2004), Fast computation of the geoelectric field using the method of elementary current systems and planar Earth models, Ann. Geophys. 22, 101–113.CrossRefGoogle Scholar
  37. Vozár, J., V.Y. Semenov, A.V. Kuvshinov, and C. Manoj (2006), Updating the map of Earth’s surface conductance, EOS Trans. AGU 87, 33, DOI: 10.1029/2006EO330004.CrossRefGoogle Scholar
  38. Weigel, R.S., A.J. Klimas, and D. Vassiliadis (2003), Solar wind coupling to and predictability of ground magnetic fields and their time derivatives, J. Geophys. Res. 108, 1298, DOI: 10.1029/2002JA009627.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alan W.P. Thomson
    • 1
  • Allan J. McKay
    • 1
  • Ari Viljanen
    • 2
  1. 1.British Geological SurveyEdinburghUK
  2. 2.Finnish Meteorological InstituteHelsinkiFinland

Personalised recommendations