Advertisement

Acta Geophysica

, 56:957 | Cite as

Electrical structure of the upper mantle beneath Central Europe: Results of the CEMES project

  • Vladimir Yu. Semenov
  • Josef Pek
  • Antal Ádám
  • Waldemar Jóźwiak
  • Boris Ladanyvskyy
  • Igor M. Logvinov
  • Pavel Pushkarev
  • Jan Vozar
Article

Abstract

In the years 2001–2003, we accomplished the experimental phase of the project CEMES by collecting long-period magnetotelluric data at positions of eleven permanent geomagnetic observatories situated within few hundreds kilometers along the south-west margin of the East European Craton. Five teams were engaged in estimating independently the magnetotelluric responses by using different data processing procedures. The conductance distributions at the depths of the upper mantle have been derived individually beneath each observatory. By averaging the individual cross-sections, we have designed the final model of the geoelectrical structure of the upper mantle beneath the CEMES region. The results indicate systematic trends in the deep electrical structure of the two European tectonic plates and give evidence that the electrical structure of the upper mantle differs between the East European Craton and the Phanerozoic plate of west Europe, with a separating transition zone that generally coincides with the Trans-European Suture Zone.

Keywords

mantle structure Central Europe electromagnetic soundings 

References

  1. Adám, A. (1965), Einige Hypothesen über den Aufbau des Oberen Erdmantels in Ungarn, Gerl. Beitr. Geophys. 74, 1, 20–40.Google Scholar
  2. Adám, A. (1978), Geothermal effects in the formation of electrically conducting zones and temperature distribution in the Earth, Phys. Earth Planet. Int. 17, 21–28, DOI: 10.1016/0031-9201(78)90046-8.CrossRefGoogle Scholar
  3. Adám, A. (1993), Physics of the upper mantle, Acta Geod. Geoph. Mont. Hung. 28,151–195.Google Scholar
  4. Adám, A., and V. Wesztergom (2001), An attempt to map the depth of the electrical asthenosphere by deep magnetotelluric measurements in the Pannonian Basin (Hungary), Acta Geol. Hung. 44, 2–3, 167–192.Google Scholar
  5. Anderssen, R.S., S.A. Gustafson, and D.E. Winch (1979), Estimating the phase of the responce of the Earth to long-period geomagnetic fluctuations, Earth Planet Sci. Lett. 44, 1, 1–6.CrossRefGoogle Scholar
  6. Astapenko, B.N., Yu.N. Kuznetsov, and L.A. Mastyulin (1993), Conductivity of the Earth’s crust and upper mantle at the area of the Baltic’ syncline, Trans. Byeloruss. Acad. Sci. 37, 5, 103–107 (in Russian).Google Scholar
  7. Berdichevsky, M.N., and V.I. Dmitriev (2002), Magnetotellurics in the Context of the Theory of Ill-Posed Problems, Soc. Explor. Geophys. (SEG), Tulsa, USA.Google Scholar
  8. Burakhovich, T.K., V.V. Gordienko, S.N. Kulik, and I.M. Logvinov (1998), Deep magnetotelluric investigations. Geodynamics of northern Carpathians, Reports on Geodesy 6, 36, 78–88.Google Scholar
  9. Constable, S.C., R.L. Parker, and C.G. Constable (1987), Occam’s inversion: a practical algorithm for inversion of electromagnetic data, Geophysics 52, 289–300, DOI: 10.1190/1.1442303.CrossRefGoogle Scholar
  10. Červ, V., S. Kováciková, J. Pek, J. Pecová, and O. Praus (2001), Geoelectrical structure across the Bohemian Massif and the transition zone to the West Carpathians, Tectonophysics 332, 201–210, DOI: 10.1016/S0040-1951(00)00257-2CrossRefGoogle Scholar
  11. Červ, V., J. Pek, O. Praus, M. Becken, and M. Smirnov (2005), Short 2004 MT profile in the vicinity of TESZ, Study of geological structures containing wellconductive complexes in Poland, Publs. Inst. Geophys. Pol. Acad. Sc. C-95, 386, 81–86.Google Scholar
  12. Egbert, G.D., and J.R. Booker (1986), Robust estimation of geomagnetic transfer functions, Geophys. J. Roy. Astron. Soc. 87, 173–194.Google Scholar
  13. Egbert, G.D., and J.R. Booker (1992), Very long period magnetotellurics at Tucson observatory: Implications for the mantle conductivity, J. Geophys. Res. 97, B11, 15099–15112, DOI: 10.1029/92JB01251.CrossRefGoogle Scholar
  14. Ernst, T., H. Brasse, V. Červ, N. Hoffmann, J. Jankowski, W. Józwiak, A. Kreutzmann, A. Neska, N. Palshin, L. Pedersen, M. Smirnov, E. Sokolova, and I.M. Varentsov (2008), Electromagnetic images of the deep structure of the Trans-European Suture Zone beneath Polish Pomerania, Geophys. Res. Lett. 35, L15307, DOI: 10.1029/2008GL034610.CrossRefGoogle Scholar
  15. Fainberg, E.B., P. Andrie, V.N. Astapenko, P. Geren, M.S. Zhdanov, B.Sh. Singer, A.I. Ingerov, A.I. Lapickii, and T.A. Vasileva (1998), Deep electromagnetic study in Byelorussia. Crustal soundings in frame of project “EUROPROBE”, Izv. Acad. Nauk SSSR, Fizika Zemli 6, 53–63 (in Russian).Google Scholar
  16. Fujii, I., and A. Schultz (2002), The 3D electromagnetic response of the Earth to ring current and auroral oval Excitation, Geophys. J. Int. 151, 689–709, DOI: 10.1046/j.1365-246X.2002.01775.x.CrossRefGoogle Scholar
  17. Grad, M., A. Guterch, and S. Mazur (2002), Seismic evidence for crustal structure in the central part of the Trans European Suture Zone in Poland. In: J.A. Winchester, T.C. Pharaoch, and J. Verniers (eds.), Paleozoic Amalgamation of Central Europe, Geological Society, London, Spec. Publ. 201, 295–309.Google Scholar
  18. Grandis, H., M. Menvielle, and M. Roussignol (1999), Bayesian inversion with Markov chains. I: The magnetotelluric one-dimensional case, Geophys. J. Int. 138, 3, 757–768, DOI: 10.1046/j.1365-246x.1999.00904.x.CrossRefGoogle Scholar
  19. Gung, Yu., M. Panning, and B. Romanovich (2003), Global anisotropy and the thickness of continents, Nature 422, 707–711, DOI: 10.1038/nature01559.CrossRefGoogle Scholar
  20. Guterch, A., M. Grad, H. Thybo, G.R. Keller, and the POLONAISE Working Group (1999), Polonaise-97’ — an interpretational seismic experiment between Precambrian and Variscan Europe in Poland, Tectonophysics 314, 101–121, DOI: 10.1016/S0040-1951(99)00239-5.CrossRefGoogle Scholar
  21. Guterch, A., M. Grad, R.G. Keller, and CELEBRATION Organizing Committee (2001), Seismologists Celebrate the new Millennium with an experiment in Central Europe, Eos Trans. AGU 82, 45, 529, 534–535, DOI: 10.1029/01EO00313.CrossRefGoogle Scholar
  22. Hvozdara, M., and J. Vozar (2004), Laboratory and geophysical implications for explanation of the nature of the Carpathian conductivity anomaly, Acta Geophys. Pol. 52, 4, 497–508.Google Scholar
  23. Ingerov, A.I., L.P. Bugrimov, I.I. Rokityansky, and A.A. Koldunov (1987), Results of the Rregional Magnetotelluric Investigations of the Deep Structure of the Southern-East Ukraine, Geoinform, Kiev (in Russian).Google Scholar
  24. Jankowski, J., J. Marianiuk, A. Ruta, C. Sucksdorff, and M. Kivinen (1984), Long term stability of a torque-balance variometr with photoelectric converters in observatory practice, Geophys. Surv. 6, 367–380, DOI: 10.1007/BF01465552.CrossRefGoogle Scholar
  25. Jones, A.G. (1999), Imaging the continental upper mantle using electromagnetic methods, Lithos 48, 57–80, DOI: 10.1016/S0024-4937(99)00022-5.CrossRefGoogle Scholar
  26. Józwiak, W. (2001), Stochastic inversion method for modeling the electrical conductivity distribution within the Earth’s mantle, Publs. Inst. Geophys. Pol. Acad. Sc. C-78, 327, 1–75.Google Scholar
  27. Józwiak, W., and T. Ernst (2005), Main conductivity anomalies in Poland in relation to the geological structure. In: Study of geological structures containing well-conductive complexes in Poland, Publs. Inst. Geophys. Pol. Acad. Sc. C-95, 386, 5–15.Google Scholar
  28. Korja, T., M. Engels, A.A. Zhamaletdinov, A. Kovtun, N.A. Palshin, M.Yu. Smirnov, A.D. Tokarev, V.E. Asming, L.L. Vanyan, I.L. Vardaniants, and the BEAR Working Group (2002), Crustal conductivity in Fennoscandia — a compilation of a database on crustal conductance in the Fennoscandian Shield, Earth Planets Space 54, 535–558.Google Scholar
  29. Kuvshinov, A., H. Utada, D. Avdeev, and T. Koyama (2005), 3D modelling and analysis of the Dst EM responses in the North Pacific Ocean region, Geophys. J. Int. 160, 505–526, DOI: 10.1111/j.1365-246X.2005.02477.x.CrossRefGoogle Scholar
  30. Leontovich, M.A. (1948), On approximate boundary conditions for an electromagnetic field on the surface of highly conductive bodies. In: Issledovaniya po rasprostraneniyu radiovoln, AN USSR, Moscow, 5–12 (in Russian).Google Scholar
  31. Logvinov, I.M. (2002), Map of the sediments conductance of the Dniepr-Donetsk Basin according to 2D modeling results, Izv. Acad. Nauk SSSR, Phys. Solid Earth 38, 11, 94–96 (in Russian).Google Scholar
  32. Majorowicz, J. (2004), Thermal lithosphere across the Trans-European Suture Zone in Poland, Geol. Quar. 48, 1, 1–14.Google Scholar
  33. Nemesi, L. (2000), Telluric map Transdanubia, Geophys. Trans. 43, 3–4, Enclosure.Google Scholar
  34. Nowożynski, K. (2004), Estimation of magnetotelluric transfer functions in the time domain over a wide frequency band, Geophys. J. Int. 158, 32–41, DOI: 10.1111/j.1365-246X.2004.02288.x.CrossRefGoogle Scholar
  35. Olsen, N. (1998), The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr, Geophys. J. Int. 133, 298–308, DOI: 10.1046/j.1365-246X.1998.00503.x.CrossRefGoogle Scholar
  36. Parker, R.L., and K.A. Whaler (1981), Numerical method for establishing solutions of the inverse problem of the electromagnetic induction, J. Geophys. Res. 86, 9574–9584, DOI: 10.1029/JB086iB10p09574.CrossRefGoogle Scholar
  37. Praus, O., J. Pecova, V. Petr, V. Babushka, and J. Plomerova (1990), Magnetotelluric and seismological determination of the lithosphere-asthenosphere transition in Central Europe, Phys. Earth Planet. Int. 60, 212–238, DOI: 10.1016/0031-9201(90)90262-V.CrossRefGoogle Scholar
  38. Pushkarev, P., T. Ernst, J. Jankowski, W. Jóźwiak, M. Lewandowski, K. Nowozynski, and V.Yu. Semenov (2007), Deep resistivity structure of the Trans-European Suture Zone in Central Poland, Geophys. J. Int. 169, 926–940, DOI: 10.1111/j.1365-246X.2007.03334.x.CrossRefGoogle Scholar
  39. Pushkarev, P.Yu., A.G. Yakovlev, and A.D. Yakovlev (1999), Software for the solution of forward and inverse problems of frequency soundings, VINITI, Moscow, 199-B99, 12.Google Scholar
  40. Roberts, R.G. (1984), The long-period electromagnetic response of the Earth, Geophys. J. Roy. Astron. Soc. 78, 2, 547–572.Google Scholar
  41. Schmucker, U. (2003), Horizontal special gradient sounding and geomagnetic depth sounding in the period range of daily variation. In: Protokoll über das Kol loquium elektromagnetische Tiefenforschung, Kolloquium: Konigstein, 29.09-3.10.2003, 228–237.Google Scholar
  42. Schultz, A., R.D. Kurtz, A.D. Chave, and A.G. Jones (1993), Conductivity discontinuities in the upper mantle beneath a stable craton, Geophys. Res. Lett. 20, 24, 2941–2944, DOI: 10.1029/93GL02833.CrossRefGoogle Scholar
  43. Schultz, A., and J.C. Larsen (1983), Analysis of zonal field morphology and data quality for a global set of magnetic observatory daily mean values, J. Geomag. Geoelectr. 35, 835–846.Google Scholar
  44. Semenov, V.Yu. (2000), On the apparent resistivity in magnetotelluric sounding, Izv., Phys. Solid Earth 36, 1, 99–100.Google Scholar
  45. Semenov, V.Yu., and W. Jóźwiak (2005), Estimation of the upper mantle electric conductance at the Polish margin of the East European Platform, Izv., Phys. Solid Earth 41, 4, 80–87.Google Scholar
  46. Semenov, V.Yu., and W. Jóźwiak (2006), Lateral variations of the mid-mantle conductance beneath Europe, Tectonophysics 416, 279–288, DOI: 10.1016/j.tecto.2005.11.017.CrossRefGoogle Scholar
  47. Semenov, V.Yu., R. Hempfling, A. Junge, J. Marianiuk, and U. Schmucker (2001), Test of equipment for electric field observation in deep magnetotelluric soundings, Acta Geophys. Pol. 49, 3, 373–388.Google Scholar
  48. Semenov, V.Yu., W. Jóźwiak, and J. Pek (2003), Deep electromagnetic soundings conducted in Trans-European Suture Zone, Eos Trans. AGU 84, 52, 581, 584, DOI: 10.1029/2003EO520001.CrossRefGoogle Scholar
  49. Semenov, V.Yu., T. Ernst, K. Nowozynski, J. Pek, and EMTESZ Working Group (2005), Estimation of the deep geoelectrical structure beneath TESZ in NW Poland. Study of geological structures containing well conductive complexes in Poland, Publs. Inst. Geophys. Pol. Acad. Sc C-95, 386, 63–65.Google Scholar
  50. Semenov, V.Yu., J. Vozar, and V. Shuman (2007), A new approach to gradient geomagnetic sounding. Izv., Phys. Solid Earth 43, 7, 592–596, DOI: 10.1134/S1069351307070087CrossRefGoogle Scholar
  51. Senior, T.B.A., and J.L. Volakis (1995), Approximate Boundary Conditions in Electromagnetics, IEE Press, London, 353 pp.Google Scholar
  52. Sheinkman, A.L., N.V. Narsky, and A.V. Lipilin (2003), Map summary longitudinal conductivity of sedimentary cover European part of Russia, The International Geophysical Conference “Geophysics of the 21 Century — the Leap into Future”, Moscow, 1–4 September.Google Scholar
  53. Shuman, V., and S. Kulik (2002), The fundamental relations of impedance type in general theories of the electromagnetic induction studies, Acta Geophys. Pol. 50, 4, 607–618.Google Scholar
  54. Sokolova, E.Yu., Iv.M. Varentsov, and BEAR Working Group (2007), Deep array electromagnetic sounding on the Baltic Shield: external excitation model and implications for upper mantle conductivity studies, Tectonophysics 445, 3–25, DOI: 10.1016/j.tecto.2007.07.006.CrossRefGoogle Scholar
  55. Stanica, D., and M. Stanica (1984), Crust and upper mantle investigation by magnetotelluric soundings in Romania, Acta Geod. Geoph. Mont. Hung. 19, 1–2, 147–152.Google Scholar
  56. Swift, C.M. (1967), Magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States, Dissertation, MIT, Cambridge.Google Scholar
  57. Świeczak, M., E. Kozlovskaya, M. Majdański, M. Grad, and A. Guterch (2007), 3D density model of the crust and upper mantle for the territory of Poland derived by forward modeling and inversion of gravimetric geoid, EGU-2007, Wiedeń, poster.Google Scholar
  58. Tregubenko, V.I., L.L. Finchuck, and V.V. Beloshaskaia (1989), Results of regional magnetotelluric soundings in the North-western Ukraine, Kiev, UTGF, 130.Google Scholar
  59. Vanyan, L.L. (1997), Electromagnetic Soundings, Nauchnyy Mir, Moscow (in Russian).Google Scholar
  60. Vozar, J., V.Y. Semenov, A.V. Kuvshinov, and C. Manoj (2006), Updating the map of Earth’s surface conductance, Eos. Trans. AGU 87, 33, August 15, 326, 331, DOI: 10.1029/2006EO330004.CrossRefGoogle Scholar
  61. Weckmann, U., O. Ritter, and V. Haak (2003), Images of the magnetotelluric apparent resistivity tensor, Geophys. J. Int. 155, 456–468, DOI: 10.1046/j.1365-246X.2003.02062.x.CrossRefGoogle Scholar
  62. Weidelt, P. (1972), The inverse problem of geomagnetic induction, Zeitschrift für Geophysik 38, 257–289.Google Scholar
  63. Wilde-Piórko, M., M. Świeczak, M. Majdański, M. Grad, POLONAISE’97 Working Group, and SUDETES (2003), Seismic model of the lithosphere in Trans-European Suture Zone in Poland, Poster EGU06-A-05172. SM3-1TH5P-0332, http://www.cosis.net/abstracts/EGU06/05172/EGU06-J-05172.pdf.
  64. Zharkov, V.N. (1983), Internal Structures of the Earth and Planets, Nauka, Moscow (in Russian).Google Scholar
  65. Zielhuis, A., and G. Nolet (1994), Deep seismic expression of an ancient plate boundary in Europe, Science 265, 79–81, DOI: 10.1126/science.265.5168.79.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vladimir Yu. Semenov
    • 1
  • Josef Pek
    • 2
  • Antal Ádám
    • 3
  • Waldemar Jóźwiak
    • 1
  • Boris Ladanyvskyy
    • 4
  • Igor M. Logvinov
    • 5
  • Pavel Pushkarev
    • 1
  • Jan Vozar
    • 6
  1. 1.Institute of GeophysicsPolish Academy of SciencesWarsawPoland
  2. 2.Geophysical InstituteAcademy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.Geodetic and Geophysical Research InstituteHungarian Academy of SciencesSopronHungary
  4. 4.Carpathian Branch of the Institute of GeophysicsNational Academy of Sciences of UkraineLvivUkraine
  5. 5.Institute of GeophysicsNational Academy of Sciences of UkraineKievUkraine
  6. 6.Geophysical InstituteSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations