Acta Geophysica

, Volume 56, Issue 2, pp 293–312 | Cite as

Rupture model of the great AD 365 Crete earthquake in the southwestern part of the Hellenic Arc

  • Eleftheria E. Papadimitriou
  • Vassilios G. Karakostas
Research Article


An M8.3 earthquake struck the southwestern part of the Hellenic Arc, near the Island of Crete, in AD 365, generating a tsunami that affected almost the entire eastern Mediterranean region. Taking into account that the time history of seismicity in this region is fairly complete for such earthquakes in the historical catalog, which can be dated as back as the 5th century B.C., there is no indication that this segment of plate boundary has been fully ruptured again. The seismic hazard associated with this part of the Hellenic Arc necessitates the evaluation of the rupture characteristics of this great event. The constraint of the faulting geometry was initially achieved by using information from seismicity, and the focal mechanisms of earthquakes that occurred during the instrumental period. A rupture model for this great earthquake is constructed by assuming an elastic medium and calculating the theoretical surface displacements for various fault models that are matched with the observed surface deformation gleaned from historical reports. The resulted fault model concerns thrust faulting with a rupture length of 160 km and a seismic moment of 5.7 × 1028 dyn·cm, an average slip of 8.9 m and a corresponding moment magnitude equal to 8.4, in excellent agreement with the macroseismic estimation. The absence of such events recurrence is an indication of the lack of complete seismic coupling that is common in subduction zones, which is in accordance with the back arc spreading of the Aegean microplate and with previous results showing low coupling for extensional strain of the upper plate.

Key words

Hellenic subduction zone historical earthquake slip distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambraseys, N., C. Melville, and R. Adams (1994), The Seismicity of Egypt, Arabia and the Red Sea, Cambridge University Press, Cambridge.Google Scholar
  2. Ando, M. (1975), Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough, Japan, Tectonophysics 27, 119–140.CrossRefGoogle Scholar
  3. Angelier, J. (1979), Recent quaternary tectonics in the Hellenic arc: Examples of geological observations on land, Tectonophysics 52, 267–275.CrossRefGoogle Scholar
  4. Angelier, J., N. Lyberis, X. LePichon, and X. Huchon (1982). The tectonic development of the Hellenic arc and the Sea of Crete: A synthesis, Tectonophysics 86, 159–196.CrossRefGoogle Scholar
  5. Argus, D.F., R.G. Gordon, C. DeMets, and S. Stein (1989), Closure of the Africa-Eurasia-North America plate motion circuit and tectonics of the Gloria fault, J. Geophys. Res. 94, 5585–5602.CrossRefGoogle Scholar
  6. Baker, C., D. Hatzfeld, H. Lyon-Caen, E. Papadimitriou, and A. Rigo (1997), Earthquake mechanisms of the Adriatic Sea and western Greece: implications for the oceanic sudbuction — continental collision transition, Geophys. J. Intern. 131, 559–594.CrossRefGoogle Scholar
  7. Benetatos, C., A. Kiratzi, C. Papazachos, and G. Karakaisis (2004), Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic Arc, J. Geodyn. 37, 253–296.CrossRefGoogle Scholar
  8. Casten, U., and K. Snopek (2006), Gravity modeling of the Hellenic subduction zone — a regional study, Tectonophysics 417, 183–200.CrossRefGoogle Scholar
  9. Erikson, L. (1986), A three-dimensional dislocation program with applications to faulting in the Earth, Masters Thesis, Stanford Univ., Stanford, CA, 167 pp.Google Scholar
  10. Flemming, N.C., and P.A. Pirazzoli (1981), Archéologie des côtes de la Crète, Histoire et Archéologie, Dossiers 50, 66–81.Google Scholar
  11. Fytikas, M., F. Innocenti, P. Manetti, R. Mazzuoli, A. Peccerilo, and L. Villari (1984) Tertiary to Quaternary evolution of volcanism in the Aegean region, Geol. Soc. London, Spec. Publ. 17, 687–699.Google Scholar
  12. Govers, R., and M.J.R. Wortel (2005), Lithosphere tearing at STEP faults: Response to edges of subduction zones, Earth Planet. Sci. Lett. 236, 505–523.CrossRefGoogle Scholar
  13. Guidoboni, E., A. Comastri, and G. Traina (1994), Catalogue of Ancient Earthquakes in the Mediterranean Area up to 10 th Century, Istituto Nazionale di Geofisica, Roma, 504 pp.Google Scholar
  14. Hatzfeld, D., G. Pedottti, P. Hatzidimitriou, and K. Makropoulos (1990), The strain pattern in the western Hellenic arc deduced from a microearthquake survey. Geophys. J. Int. 101, 181–202.CrossRefGoogle Scholar
  15. Jackson, J. (1994), Active tectonics of the Aegean region, Annu. Rev. Earth Planet. Sci. 22, 239–271.CrossRefGoogle Scholar
  16. Jarrard, R.D. (1986), Causes of compression and extension behind trenches, Tectonophysics 132, 89–102.CrossRefGoogle Scholar
  17. Kanamori, H. (1977), The energy release in great earthquakes, J. Geophys. Res. 82, 2981–2987.CrossRefGoogle Scholar
  18. Kanamori, H. (1986), Rupture process of subduction zone earthquakes, Ann. Rev. Earth Planet. Sci. 14, 293–322.CrossRefGoogle Scholar
  19. Kastens, K.A. (1991), Rate of outward growth of the Mediterranean Ridge accretionary complex: volume balance of mud extrusion versus subduction-accretion, Tectonophysics 199, 25–50.CrossRefGoogle Scholar
  20. Kiratzi, A.A., and C. Langston (1989), Estimation of earthquake source parameters of the May 4, 1972 event of the Hellenic arc by the inversion of waveform data, Phys. Earth Planet. Inter. 57, 225–232.CrossRefGoogle Scholar
  21. Kiratzi, A.A., and C.B. Papazachos (1995), Active seismic deformation in the southern Aegean Benioff zone, J. Geodynamics 19, 65–78.CrossRefGoogle Scholar
  22. Laborel, J., and F. Laborel-Deguen (1994), Biological indicators of Holocene sea-level variations and of co-seismic displacement in the Mediterranean area, J. Coast. Res. 10, 395–415.Google Scholar
  23. LePichon, X., and J. Angelier (1979). The Hellenic arc and trench system: A key to the neotectonic evolution of the eastern Mediterranean area, Tectonophysics 60, 1–42.CrossRefGoogle Scholar
  24. LePichon, X., and J. Angelier (1981), The Aegean Sea, Phil. Trans. Roy. Soc. London 300, 357–372.CrossRefGoogle Scholar
  25. Li, X., G. Bock, A. Vafidis, R. Kind, H.-P. Harjes, W. Hanka, K. Wylegalla, M. van der Meijde, and X. Yuan (2003), Receiver function study of the Hellenic subduction zone: imaging crustal thickness variations and the oceanic Moho of the descending African lithosphere, Geophys. J. Intern. 155, 733–748.CrossRefGoogle Scholar
  26. Louvari, E. (2000), A detailed seismotectonic study in the Aegean Sea and the surrounding area with emphasis on the information obtained from microearthquakes, Ph.D. Thesis, Aristotle University of Thessaloniki, 373 pp.Google Scholar
  27. Lyon-Caen, H., R. Armijo, J. Drakopoulos, J. Baskoutas, N. Delibasis, R. Gaulon, V. Kouskouna, J. Latoussakis, K. Makropoulos, P. Papadimitriou, D. Papanastasiou, and G. Pedotti (1988), The 1986 Kalamata (south Peloponnesus) earthquake: Detailed study of a normal fault for east-west extension in the Hellenic arc, J. Geophys. Res. 93, 14967–15000.CrossRefGoogle Scholar
  28. Mascle, J., and E. Chaumillon (1997), Pre-collisional geodynamics of the Mediterranean Sea: The Mediterranean Ridge and the Tyrrhenian Sea, Annali Geofis. 40, 569–586.Google Scholar
  29. McKenzie, D. (1978), Active tectonics of the Alpine-Himalayan belt: The Aegean Sea and surrounding regions, Geophys. J. Roy. Astron. Soc. 55, 217–254.Google Scholar
  30. Meijer, P.T., and M.J.R. Wortel (1996), Temporal variations in the stress field of the Aegean region, Geophys. Res. Lett. 23, 439–442.CrossRefGoogle Scholar
  31. Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am. 82, 1018–1040.Google Scholar
  32. Olivet, J.-L., J. Bonnin, P. Beuzart, and J.M. Auzende (1982), Cinématique des plaques et paléogéographie: une revue, Bull. Soc. Géol. France 24, 875–892.Google Scholar
  33. Pacheco, J.F., L.R. Sykes, and C.H. Scholz (1993), Nature of seismic coupling along simple plate boundaries of the subduction type, J. Geophys. Res. 98, 14,133–14,159.CrossRefGoogle Scholar
  34. Papadimitriou, E. (1993), Focal mechanism along the convex side of the Hellenic Arc, Boll. Geof. Teor. Appl. 35, 401–426.Google Scholar
  35. Papazachos, C.B. (1992), Anisotropic radiation modelling of macroseismic intensities for estimation of the attenuation structure of the upper crust in Greece, Pure Appl. Geophys. 138, 445–469.CrossRefGoogle Scholar
  36. Papazachos, B.C. (1996), Large seismic faults in the Hellenic Arc, Annali Geof. 39, 891–903.Google Scholar
  37. Papazachos, B.C., and P.E. Comninakis (1971), Geophysical and tectonic features of the Aegean Arc, J. Geophys. Res. 76, 8517–8533.CrossRefGoogle Scholar
  38. Papazachos, C.B., and G. Nolet (1997), P and S deep velocity structure of the Hellenic Arc obtained by robust nonlinear inversion of travel times, J. Geophys. Res. 102, 8349–8367.CrossRefGoogle Scholar
  39. Papazachos, C.B., and Ch.A. Papaioannou (1997), The macroseismic field in the Balkan area, J. Seismology 1, 181–201.CrossRefGoogle Scholar
  40. Papazachos, B.C., and C. Papazachou (2003), The Earthquakes of Greece, Ziti Publ., Thessaloniki, 317 pp.Google Scholar
  41. Papazachos, B.C., A.A. Kiratzi, and V.G. Karakostas (1997a). Toward a homogeneous moment magnitude determination in Greece and surrounding area, Bull. Seism. Soc. Am. 87, 474–483.Google Scholar
  42. Papazachos, B.C., Ch.A. Papaioannou, C.B. Papazachos, and A.S. Savvaidis (1997b), Atlas of isoseismal maps for strong earthquakes in Greece and surrounding area (426 BC-1995), Publ. Geophys. Lab., Univ. Thessaloniki 4, 192 pp.Google Scholar
  43. Papazachos, B.C., B.G. Karakostas, C.B. Papazachos, and E.M. Scordilis (2000), The geometry of the Benioff zone and lithospheric kinematics in the Hellenic Arc, Tectonophysics 319, 275–300.CrossRefGoogle Scholar
  44. Papazachos, B.C., D.M. Mountrakis, C.B. Papazachos, M.D. Tranos, G.F. Karakaisis, and A.S. Savvaidis (2001), The faults that caused the known strong earthquakes in Greece and surrounding areas during 5th century B.C. up to present, 2 nd Conf. Earthq. Enging. and Engin. Seism., 28–30 September 2001, Thessaloniki 1, 17–26.Google Scholar
  45. Papazachos, B.C., E.M. Scordilis, D.G. Panagiotopoulos, C.B. Papazachos, and G.F. Karakaisis (2004), Global relations between seismic fault parameters and moment magnitude of earthquakes, 10 th Congr. Hellenic Geol. Society, 14–17 April 2004, Thessaloniki, 539–540.Google Scholar
  46. Pirazzoli, P.A. (1996), Sea-level Changes. The Last 20,000 Years, Wiley, New York, 211 pp.Google Scholar
  47. Pirazzoli, P.A. (1999), Les ports antiques soulevés de la Méditerranée orientale. In: V.M. Rosselló (ed.), Geoarqueologia I Quaternari Litoral, Valencia Univers. 391–401.Google Scholar
  48. Pirazzoli, P.A., J. Thomeret, Y. Thomeret, J. Laborel, and L. Montagionni (1982), Crustal block movements from Holocene shorelines: Crete and Antikythira (Greece), Tectonophysics 68, 27–43.CrossRefGoogle Scholar
  49. Pirazzoli, P.A., J. Ausseil-Badie, P. Girese, E. Hadjidaki, and M. Arnold (1992), Historical environmental changes at Phalasarna Harbor, West Crete, Geoarchaeology 7, 371–392.CrossRefGoogle Scholar
  50. Pirazzoli, P.A., J. Laborel, and S.C. Stiros (1996), Earthquake clustering in the eastern Mediterranean during historical times, J. Geophys. Res. 101, 6083–6097.CrossRefGoogle Scholar
  51. Pologiorgi, M. (1985), Kisamos, the topography of an ancient town of western Crete, Archaeologika Analekta ex Athinon 18, 65–80 (in Greek).Google Scholar
  52. Ruff, L., and H. Kanamori (1980), Seismicity and the subduction process, Phys. Earth Planet. Inter. 23, 240–252.CrossRefGoogle Scholar
  53. Satake, K. (1993). Depth distribution of coseismic slip along the Nankai trough, Japan, from joint inversion of geodetic and tsunami data, J. Geophys. Res. 98, 4553–4565.CrossRefGoogle Scholar
  54. Sato, T., and M. Matsu’ura (1988), A kinematic model for deformation of the lithosphere at subduction zones, J. Geophys. Res. 93, 6410–6418.CrossRefGoogle Scholar
  55. Sato, T., and M. Matsu’ura (1993), A kinematic model for evolution of island arc trench systems, Geophys. J. Int. 114, 512–530.CrossRefGoogle Scholar
  56. Scholz, C.H. (1982), Scaling laws for large earthquakes: Consequences for physical models, Bull. Seism. Soc. Am. 72, 1–14.Google Scholar
  57. Scholz, C.H. (2002), The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge, 471 pp.Google Scholar
  58. Scholz, C.H., and J. Campos (1995), On the mechanism of seismic decoupling and back arc spreading at subduction zones, J. Geophys. Res. 100, 22,103–22,115.CrossRefGoogle Scholar
  59. Scordilis, E.M., G.F. Karakaisis, B.G. Karakostas, D.G. Panagiotopoulos, P.E. Comninakis, and B.C. Papazachos (1985), Evidence for transform faulting in the Ionian Sea: The Cephalonia Island earthquake sequence, Pure Appl. Geophys. 123, 388–397.CrossRefGoogle Scholar
  60. Spakman, W., M.J.R. Wortel, and N.S. Vlaar (1988), The Hellenic subduction zone: a tomographic image and its geodynamic implications, Geophys. Res. Lett. 15, 60–63.CrossRefGoogle Scholar
  61. Steketee, J.A. (1958), On Voltera’s dislocations in a semi-infinite elastic medium, Can. J. Phys. 36, 192–205.Google Scholar
  62. Stiros, S. (2001), The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: a review of historical and archaeological data, J. Struct. Geol. 23, 545–562.CrossRefGoogle Scholar
  63. Stiros, S.C., and S. Papageorgiou (2001), Seismicity of western Crete and the destruction of the town of Kissamos at AD 365: Archaeological evidence, J. Seismology 5, 381–397.CrossRefGoogle Scholar
  64. Taymaz, T., J. Jackson, and R. Westaway (1990), Earthquake mechanisms in the Hellenic trench near Crete, Geophys. J. Int. 102, 695–731.CrossRefGoogle Scholar
  65. Thommeret, Y., J. Laborel, L. Montaggioni, and P. Pirazzoli (1981), Late Holocene shoreline changes and seismotectonic displacements in western Greece (Greece), Z. Geomorph. Supl. 40, 127–149.Google Scholar
  66. Uyeda, S., and H. Kanamori (1979), Back-arc opening and the mode of subduction, J. Geophys. Res. 84, 1049–1061.CrossRefGoogle Scholar
  67. Wessel, P., and W.H.F. Smith (1998), New, improved version of the Generic Mapping Tools Released, EOS Trans. AGU 79, 579.CrossRefGoogle Scholar
  68. Wortel, M.J.R., and W. Spakman (1992), Structure and dynamics of subducted lithosphere in the Mediterranean region, Proc. Kon. Ned. Acad. Sci. 95, 325–347.Google Scholar
  69. Wortel, M.J.R., S.D.B Goes, and W. Spakman (1990), Structure and seismicity of the Aegean subduction zone, Terra Nova 2, 554–562.CrossRefGoogle Scholar
  70. Yabuki, T., and M. Matsu’ura (1992), Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip, Geophys. J. Int. 109, 363–375.CrossRefGoogle Scholar

Copyright information

© Versita 2008

Authors and Affiliations

  • Eleftheria E. Papadimitriou
    • 1
  • Vassilios G. Karakostas
    • 1
  1. 1.Department of GeophysicsUniversity of ThessalonikiThessalonikiGreece

Personalised recommendations