Acta Geophysica

, Volume 56, Issue 1, pp 100–113 | Cite as

Nocturnal basin low-level jets: an integrated study

  • Joan Cuxart


Low-level jets (LLJs) are a very common feature in the nocturnal stably stratified boundary layer. Many factors can intervene in their generation, linked basically to effects of baroclinity. A special kind of low-level jets is composed by the nocturnal katabatic and basin flows, generated over terrain slopes. A study of observed LLJs in the Duero Basin is shown here, combining observational data and modelling experiments. Normalized in respect to the maximum wind height, the dynamic characteristics of the jets are similar: a two-layer system, with a stably stratified layer below the jet maximum and a near neutral layer above, with a very stable layer separating them at the level of the wind maximum. There is vertical mixing above and below the jet, and the connection between these layers takes place occasionally in a very turbulent manner.

Key words

low-level jet katabatic flows Duero Basin vertical mixing two-layer system large-eddy simulation mesoscale modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banta, R.M., R.K. Newsom, J.K. Lundquist, Y.L. Pichugina, R.L. Coulter, and L. Mahrt (2002), Nocturnal low-level jet characteristics over Kansas during CASES-99, Bound.-Layer Meteor. 105, 221–252.CrossRefGoogle Scholar
  2. Banta, R.M., Y.L. Pichugina, and R.K. Newsom (2003), Relationship between low-level properties and turbulence kinetic energy in the nocturnal stable boundary layer, J. Atmos. Sci. 60, 2549–2555.CrossRefGoogle Scholar
  3. Banta, R.M., Y.L. Pichugina, and W.A. Brewer (2006), Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet, J. Atmos. Sci. 63, 2700–2719.CrossRefGoogle Scholar
  4. Blackadar, A.K. (1957), Boundary layer wind maxima and their significance for the growth of nocturnal inversions, Bull. Amer. Meteor. Soc. 38, 283–290.Google Scholar
  5. Bravo, M., A. Mira, M.R. Soler, and J. Cuxart (2008), Intercomparison and evaluation of MM5 and Meso-NH mesoscale models in the stable boundary layer, Bound.-Layer Meteor. (in press).Google Scholar
  6. Briggs, G.A. (1979), Analytic modeling of drainage flows. Document available from EPA, Environmental Sciences Research Lab, Research Triangle Park, NC 27722.Google Scholar
  7. Conangla, L., and J. Cuxart (2006), On the turbulence in the upper part of the low-level jet: an experimental and numerical study, Bound.-Layer Meteor. 118, 379–400.CrossRefGoogle Scholar
  8. Cuxart, J., and M.A. Jiménez (2007), Mixing processes in a nocturnal low-level jet: An LES study, J. Atmos. Sci. 64, 1666–1679.CrossRefGoogle Scholar
  9. Cuxart, J., C. Yagüe, G. Morales, E. Terradellas, J. Orbe, J. Calvo, A. Fernandez, M.R. Soler, C. Infante, P. Buenestado, A. Espinalt, H.E. Joergensen, J.M. Rees, J. Vilá, J.M. Redondo, I.R. Cantalapiedra, and L. Conangla (2000a), Stable Atmospheric Bound.-Layer Experiment in Spain (SABLES 98): A report, Bound.-Layer Meteor. 96, 337–370.CrossRefGoogle Scholar
  10. Cuxart, J., P. Bougeault, and J.-L. Redelsperger (2000b), A turbulence scheme allowing for mesoscale and large-eddy simulations, Quart. J. Roy. Meteor. Soc. 126, 1–30.CrossRefGoogle Scholar
  11. Cuxart, J., A.A.M. Holtslag, R.J. Beare, E. Bazile, A. Beljaars, L. Conangla, M. Ek, F. Freedman, R. Hamdi, A. Kerstein, A. Kitagawa, G. Lenderink, D. Lewellen, J. Mailhot, T. Mauritsen, V. Perov, G. Schayes, G.-J. Steeneveld, G. Svensson, P. Taylor, W. Weng, S. Wunsch, and K.-M. Xu (2006), Single-column model intercomparison for a stably stratified atmospheric boundary layer, Bound.-Layer Meteor. 118, 273–303.CrossRefGoogle Scholar
  12. Cuxart, J., M.A. Jiménez, and D. Martínez (2007), Nocturnal mesobeta basin and katabatic flows on a midlatitude island, Mon. Weather Rev. 135, 918–932.CrossRefGoogle Scholar
  13. Garratt, J.R. (1992), The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.Google Scholar
  14. Jiménez, M.A., and J. Cuxart (2005), Large-eddy simulations of the stable boundary layer: study of applicability using experimental data, Bound.-Layer Meteor. 115, 241–261.CrossRefGoogle Scholar
  15. Lafore, J.P., J. Stein, N. Asencio, P. Bougeault, V. Ducrocq, J. Duron, C. Fisher, P. Héreil, P. Mascart, J.P. Pinty, J.-L. Redelsperger, E. Richard, and J. Vilá-Guerau de Arellano (1998), The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulation, Ann. Geophys. 16, 90–109.CrossRefGoogle Scholar
  16. Mahrt, L. (1982), Momentum balance of gravity flows, J. Atmos. Sci. 39, 2701–2711.CrossRefGoogle Scholar
  17. Mahrt, L., J. Sun, W. Blumen, T. Delany, and S. Oncley (1998), Nocturnal boundary-layer regimes, Bound.-Layer Meteor. 88, 255–278.CrossRefGoogle Scholar
  18. Martínez, D., A.J. Mira, and J. Cuxart (2007), A comparison between two katabatic flows of different scale in mid-latitudes, Proc. ICAM-2007, Chambery (France).Google Scholar
  19. Princevac, M., J.C.R. Hunt, and H.J.S. Fernando (2007), Quasi-steady katabatic winds on slopes in wide valleys: hydraulic theory and observations, J. Atmos. Sci. (in press).Google Scholar
  20. San Jose, R., J.L. Casanova, R.E. Viloria, and J. Casanova (1985), Evaluation of the turbulent parameters of the unstable surface boundary layer outside Businger’s Range, Atmos. Environ. 19, 1555–1561.CrossRefGoogle Scholar
  21. Smedman, A.S., M. Tjernström, and U. Högström (1993), Analysis of the turbulence structure of a marine low-level jet, Bound.-Layer Meteor. 66, 105–126.CrossRefGoogle Scholar
  22. Strobach, K. (1991), Unser Planet Erde: Unsprung und Dynamik, Gebr. Borntrager, Berlin.Google Scholar
  23. Stull, R.B. (1988), An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.Google Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences 2008

Authors and Affiliations

  1. 1.Departament de FisicaUniversitat de les Illes BalearsMallorcaSpain

Personalised recommendations