Advertisement

Acta Geophysica

, Volume 54, Issue 3, pp 280–302 | Cite as

Two models of parameterized convection for medium-sized icy satellites of Saturn

  • Leszek Czechowski
Article

Abstract

A parameterized theory of convection is developed for 6 medium-size icy satellites (MIS) of Saturn. It is an extension of the research concerning the Mimas-Enceladus paradox. Two parameterizations of dimensionless temperature are used in the model and a new constrain for tidal heating is included. It is found that the basic results of the model are independent of particulars of the parameterizations. The new constrain considerably reduces the space of possible values of the material parameter of satellites but the two basic conclusions are unchanged, i.e.: (a) the thermal state of the considered MIS can be explained in the frame of the uniform model that includes radiogenic and tidal heating; (b) the theory indicates that endogenic activity of some MIS was (or is) a result of a specific ‘excited’, high temperature state of a given satellite. The theory could be also used for estimation of tidal heating.

Key words

medium-size satellites tides thermal evolution tectonics volcanism parameterized theory of convection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr, A.C., and R.T. Pappalardo, 2005, Onset of convection in the icy Galilean satellites: influence of rheology, J. Geophys. Res. 110, E12005, doi:10,11029/2004/JE002371.Google Scholar
  2. Christensen, U., 1984, Convection with pressure and temperature-dependent non-Newtonian rheology, Geophys. J. Roy. Astron. Soc. 77, 343–84.Google Scholar
  3. Czechowski, L., 1993, Theoretical Approach to Mantle Convection. In: R. Teisseyre, L. Czechowski and J. Leliwa-Kopystyński (eds.), “Dynamics of the Earth’s Evolution”, Elsevier, Amsterdam, The Netherlands, 161–271.Google Scholar
  4. Czechowski, L., 2004a, Parameterized model of convection driven by tidal and radiogenic heating, Presented on COSPAR, 18–25 July 2004, Paris, Session B0.5/D3.7/C3.4.Google Scholar
  5. Czechowski, L., 2004b, Convection driven by tidal heating: numerical model and parameterized theory, Paper presented on International Congress of Theoretical and Applied Mechanics (ICTAM) in August 2004, Warszawa.Google Scholar
  6. Czechowski, L., 2005, Endogenic activity of medium-size icy satellites of Saturn and eccentricities of their orbits (submitted).Google Scholar
  7. Czechowski, L., 2006, Parameterized model of convection driven by tidal and radiogenic heating, Adv. Space Res. (in print).Google Scholar
  8. Czechowski, L., and J. Leliwa-Kopystyński, 2003, Tidal heating and convection in medium sized icy satellites, Celest. Mech. and Dyn. Astr. 87, 157–169.CrossRefGoogle Scholar
  9. Czechowski, L., and J. Leliwa-Kopystyński, 2005, Convection driven by tidal and radiogenic heating in medium sized icy satellites, Planet. Space Sci. 53, 749–769.CrossRefGoogle Scholar
  10. De Pater, I., and J.J. Lissauer, 2001, Planetary Sciences, Cambridge Univ. Press, Cambridge, UK, pp. 528.Google Scholar
  11. Dumoulin, C., M.-P. Doin and L. Fleitout, 1999, Heat transport in stagnant lid convection with temperature-and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res. 104, 12 759–12 777.CrossRefGoogle Scholar
  12. Durham, W.B., S.H. Kirby and L.A. Stern, 1998, Rheology of planetary ices. In: B. Schmitt, de C. Bergh and M. Festou (eds.), “Solar System Ices”, Kluwer Acad. Publ., Dordrecht, The Netherland, 63–78.Google Scholar
  13. Ellsworth, K., and G. Schubert, 1983, Saturn icy satellites; thermal and structural models, Icarus 54, 490–510.CrossRefGoogle Scholar
  14. Federico, C., and P. Lanciano, 1983, Thermal and structural evolution of four satellites of Saturn, Ann. Geophys. 1, 469–476.Google Scholar
  15. Fischer, H.-J., and T. Spohn, 1990, Thermal-orbital histories of viscoelastic models of Io (Jl), Icarus 83, 39–65.CrossRefGoogle Scholar
  16. Forni, O., A. Coradini and C. Federico, 1991, Convection and lithospheric strength in Dione, an icy satellite of Saturn, Icarus 94, 232–245.CrossRefGoogle Scholar
  17. Gavrilov, S.V., and V.N. Zharkov, 1977, Love numbers of the giant planets, Icarus 32, 443–449.CrossRefGoogle Scholar
  18. Goldsby, D.L., and D.L. Kohlstedt, 1997, Grain boundary sliding in fine-grained Ice-I, Scr. Mater. 37, 1399–1405.CrossRefGoogle Scholar
  19. Hobbs, P.V., 1974, Ice Physics, Oxford Univ. Press, New York.Google Scholar
  20. Jacobson, R.A., 2004, The orbits of the major Saturnian satellites and the gravity field of Saturn from spacecraft and Earthbased observations, submitted to Astron. J. (ssd.jpl.nasa.gov/sat_props.html).Google Scholar
  21. Kargel, J.S., and S. Pozio, 1996, The volcanic and tectonic history of Enceladus, Icarus 119, 385–404.CrossRefGoogle Scholar
  22. Kossacki, K.J., and J. Leliwa-Kopystyński, 1993, Medium-size icy satellites: thermal and structural evolution during accretion, Planet. Space Sci. 41, 729–741.CrossRefGoogle Scholar
  23. Lissauer, J.J., S.J. Peale and J.N. Cuzzi, 1984, Ring torque on Janus and the melting of Enceladus, Icarus 58, 159–168.CrossRefGoogle Scholar
  24. McKinnon, W.B., 1998, Geodynamics of Icy Satellites. In: B. Schmitt, de C. Bergh and M. Festou (eds.), “Solar System Ices”, Kluwer Acad. Publ., Dordrecht, 525–550.Google Scholar
  25. Officer, C.B., 1974, Introduction to Theoretical Geophysics, Springer-Verlag, Berlin.Google Scholar
  26. Peale, S.J., 2003, Tidally induced volcanism, Celest. Mech. Dyn. Astr. 87, 129–155.CrossRefGoogle Scholar
  27. Peale, S.J., P. Cassen and R.T. Reynolds, 1979, Melting of I 0 by tidal dissipation, Science 203, 892–894.Google Scholar
  28. Peltier, W.R., and G.T. Jarvis, 1982, Whole mantle convection and the thermal evolution of the Earth, Phys. Earth Planet. Int. 29, 281–304.CrossRefGoogle Scholar
  29. Poirier, J.P., L. Bloch and P. Chambon, 1983, Tidal dissipation in small viscoelastic ice moons: the case of Enceladus, Icarus 55, 218–230.CrossRefGoogle Scholar
  30. Roscoe, R., 1952, The viscosity of suspensions of rigid spheres, British J. Appl. Phys. 3, 267–269.CrossRefGoogle Scholar
  31. Ross, M.N., and G. Schubert, 1989, Viscoelastic models of tidal heating in Enceladus, Icarus 78, 90–101.CrossRefGoogle Scholar
  32. Rothery, D.A., 1992, Satellites of the Outer Planets, Clarendon Press, Oxford.Google Scholar
  33. Schubert, G., D. Stevenson and P. Cassen, 1980, Whole planet cooling and radiogenic heat source contents of the Earth and Moon, J. Geophys. Res. 85, 2511–2518.Google Scholar
  34. Schubert, G., T. Spohn and R.T. Reynolds, 1986, Thermal histories, compositions and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), “Satellites”, The University of Arizona Press, Tucson, 224–292.Google Scholar
  35. Schubert, G., D.L. Turcotte and P. Olson, 2001, Mantle convection in the Earth and Planets. Cambridge Univ. Press, Cambridge, UK.Google Scholar
  36. Sharpe, H.N., and W.R. Peltier, 1978, Parameterized mantle convection and the Earth’s thermal history, Geophys. Res. Lett. 5, 737–740.Google Scholar
  37. Spann, N.A., J.W. Head and R.T. Pappalardo, 2002, The spacing distances of chaos and lenticulae on Europa, Lunar and Planet. Sci. 33, 1723.pdf.Google Scholar
  38. Squyres, S.W., R.T. Reynolds, P.M. Cassen and S.J. Peale, 1983, The evolution of Enceladus, Icarus 53, 319–331.CrossRefGoogle Scholar
  39. Turcotte, D.L., and G. Schubert, 1982, Geodynamics, J. Wiley and Sons, New York, pp. 450.Google Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences 2006

Authors and Affiliations

  • Leszek Czechowski
    • 1
  1. 1.Institute of GeophysicsWarsaw UniversityWarszawaPoland

Personalised recommendations