Central European Journal of Medicine

, Volume 8, Issue 4, pp 369–376 | Cite as

Impact of melatonin on immunity: a review

  • Miroslav Pohanka
Review Article


Melatonin is a hormone produced by the pineal gland. In addition to its hormonal effect, it has strong antioxidant properties. Melatonin is probably best known for its ability to control circadian rhythm; it is sold in many countries as a supplement or drug for improving of sleep quality. However, melatonin’s effect is not limited to control of circadian rhythm:. it is involved in other effects, including cell cycle control and regulation of several important enzymes, including inhibition of inducible nitric oxide synthase. Melatonin affects immunity as well. It can modulate the immune response on disparate levels with a significant effect on inflammation. The role of melatonin in body regulatory process is not well understood; only limited conclusions can be drawn from known data. The current review attempts to summarize both basic facts about melatonin’s effects and propose research on the lesser known issues in the future.


Melatonin Inflammation Neuroinflammation Antioxidant Sleep Lymphocyte Macrophage Autoimmunity 



B-cell lymphoma-extra large




melatonin receptor


natural killer


nitric oxide synthase


non-rapid eye movement


retinoic acid receptor-related orphan receptor α


cytotoxic T lymphocytes


T helper lymphocytes


Toll-like receptor


tumor necrosis factor


TIR-domain-containing adapter-inducing enterferon-β


ultra violet


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ivanova TN, Iuvone PM. Melatonin synthesis in retina: circadian regulation of arylalkylamine N-acetyltransferase activity in cultured photoreceptor cells of embryonic chicken retina. Brain Res 2003; 973: 56–63PubMedCrossRefGoogle Scholar
  2. [2]
    do Carmo Buonfiglio D, Peliciari-Garcia RA, do Amaral FG et al. Early-stage retinal melatonin synthesis impairment in streptozotocin-induced diabetic wistar rats. Invest Ophthalml Vis Sci 2011; 52: 7416–7422CrossRefGoogle Scholar
  3. [3]
    Konturek PC, Brzozowski T, Konturek SJ. Gut clock: implication of circadian rhythms in the gastrointestinal tract. J Physiol Pharmacol 2011; 62: 139–150PubMedGoogle Scholar
  4. [4]
    Hasan S, Santhi N, Lazar AS et al. Assessment of circadian rhythms in humans: comparison of realtime fibroblast reporter imaging with plasma melatonin. Faseb J 2012; 26: 2414–2423 DOI: 10.1096/fj.11-201699PubMedCrossRefGoogle Scholar
  5. [5]
    Smulevich AB, Dubnitskaya EB. A dimensional rhythmological model of depression. Z Nevrol Psikhiatrii Im S S Korsakova 2010; 110: 4–10Google Scholar
  6. [6]
    Hur SP, Takeuchi Y, Itoh H et al. Fish sleeping under sandy bottom: Interplay of melatonin and clock genes. Gen Comp Endocrinol 2012; 177: 37–45 DOI: 10.1016/j.ygcen.2012.01.007PubMedCrossRefGoogle Scholar
  7. [7]
    Barrett P, Bolborea M. Molecular pathways involved in seasonal body weight and reproductive responses governed by melatonin. J Pineal Res 2012; 52: 376–388 DOI: 10.1111/j.1600-079X.2011.00963.xPubMedCrossRefGoogle Scholar
  8. [8]
    Deregnaucourt S, Saar S, Gahr M. Melatonin affects the temporal pattern of vocal signatures in birds. J Pineal Res 2012; 53: 245–258 DOI: 10.1111/j.1600-079X.2012.00993.xPubMedCrossRefGoogle Scholar
  9. [9]
    Ekmekcioglu C. Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 2006; 60: 97–108 DOI: 10.1016/j.biopha.2006.01.002PubMedCrossRefGoogle Scholar
  10. [10]
    Jaworek J, Szklarczyk J, Jaworek AK et al. Protective effect of melatonin on acute pancreatitis. Int J Inflam 2012; 2012: 173675PubMedGoogle Scholar
  11. [11]
    Pohanka M. Alzheimer’s disease and related neurodegenerative disorders: implication and counteracting of melatonin. Journal of Applied Biomedicine 2011; 9: 185–196 DOI: DOI 10.2478/v10136-011-0003-6Google Scholar
  12. [12]
    Alonso-Vale MI, Andreotti S, Mukai PY et al. Melatonin and the circadian entrainment of metabolic and hormonal activities in primary isolated adipocytes. J Pineal Res 2008; 45: 422–429PubMedCrossRefGoogle Scholar
  13. [13]
    Gumenyuk V, Roth T, Drake CL. Circadian phase, sleepiness, and light exposure assessment in night workers with and without shift work disorder. Chronobiol Int 2012; 29: 928–936PubMedCrossRefGoogle Scholar
  14. [14]
    Bhatti P, Mirick DK, Davis S. Invited commentary: shift work and cancer. Am J Epidemiol 2012; 176: 760–763PubMedCrossRefGoogle Scholar
  15. [15]
    Rodriguez-Naranjo MI, Moya ML, Cantos-Villar E et al. Comparative evaluation of the antioxidant activity of melatonin and related indoles. J Food Compos Anal 2012; 28: 16–22 DOI: 10.1016/j.jfca.2012.07.001CrossRefGoogle Scholar
  16. [16]
    Ozturk G, Akbulut KG, Guney S et al. Age-related changes in the rat brain mitochondrial antioxidative enzyme ratios: Modulation by melatonin. Exp Gerontol 2012; 47: 706–711 DOI: 10.1016/j.exger.2012.06.011PubMedCrossRefGoogle Scholar
  17. [17]
    Ozturk G, Coskun S, Erbas D et al. The effect of melatonin on liver superoxide dismutase activity, serum nitrate and thyroid hormone levels. Jpn J Physiol 2000; 50: 149–153 DOI: 10.2170/jjphysiol.50.149PubMedCrossRefGoogle Scholar
  18. [18]
    Cutando A, Aneiros-Fernandez J, Lopez-Valverde A et al. A new perspective in Oral health: potential importance and actions of melatonin receptors MT1, MT2, MT3, and RZR/ROR in the oral cavity. Arch Oral Biol 2011; 56: 944–950PubMedCrossRefGoogle Scholar
  19. [19]
    Dubocovich ML. Melatonin receptors: Role on sleep and circadian rhythm regulation. Sleep Med 2007; 8: S34–S42 DOI: 10.1016/j.sleep.2007.10.007CrossRefGoogle Scholar
  20. [20]
    Mor M, Rivara S, Pala D et al. Recent advances in the development of melatonin MT(1) and MT(2) receptor agonists. Expert Opin Ther Pat 2010; 20: 1059–1077PubMedCrossRefGoogle Scholar
  21. [21]
    Spadoni G, Bedini A, Rivara S et al. Melatonin receptor agonists: new options for insomnia and depression treatment. CNS Neurosci Ther 2011; 17: 733–741PubMedCrossRefGoogle Scholar
  22. [22]
    Vella F, Gilles FA, Delagrange P et al. NRH: quinone reductase 2: An enzyme of surprises and mysteries. Biochem Pharmacol 2005; 71: 1–12 DOI: 10.1016/j.bcp.2005.09.019PubMedCrossRefGoogle Scholar
  23. [23]
    Tan DX, Manchester LC, Terron MP et al. Melatonin as a naturally occurring co-substrate of quinone reductase-2, the putative MT3 melatonin membrane receptor: hypothesis and significance. J Pineal Res 2007; 43: 317–320 DOI: 10.1111/j.1600-079X.2007.00513.xPubMedCrossRefGoogle Scholar
  24. [24]
    Boutin JA, Marcheteau E, Henning P et al. MT3/QR2 melatonin binding site does not use melatonin as a substrate or a co-substrate. J Pineal Res 2008; 45: 524–531PubMedCrossRefGoogle Scholar
  25. [25]
    Boutin JA, Saunier C, Guenin SP et al. Studies of the melatonin binding site location onto quinone reductase 2 by directed mutagenesis. Arch Biochem Biophys 2008; 477: 12–19 DOI: 10.1016/j. abb.2008.04.040PubMedCrossRefGoogle Scholar
  26. [26]
    Reybier K, Perio P, Ferry G et al. Insights into the redox cycle of human quinone reductase 2. Free Radic Res 2011; 45: 1184–1195 DOI: 10.3109/10715762.2011.605788PubMedCrossRefGoogle Scholar
  27. [27]
    Carbajo-Pescador S, Martin-Renedo J, Garcia-Palomo A et al. Changes in the expression of melatonin receptors induced by melatonin treatment in hepatocarcinoma HepG2 cells. J Pineal Res 2009; 47: 330–338 DOI: 10.1111/j.1600-079X.2009.00719.xPubMedCrossRefGoogle Scholar
  28. [28]
    Stehlin-Gaon C, Willmann D, Zeyer D et al. Alltrans retinoic acid is a ligand for the orphan nuclear receptor ROR beta. Nat Struct Biol 2003; 10: 820–825 DOI: 10.1038/nsb979PubMedCrossRefGoogle Scholar
  29. [29]
    Lardone PJ, Guerrero JM, Fernandez-Santos JM et al. Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. J Pineal Res 2011; 51: 454–462 DOI: 10.1111/j.1600-079X.2011.00909.xPubMedCrossRefGoogle Scholar
  30. [30]
    Missbach M, Jagher B, Sigg I et al. Thiazolidine diones, specific ligands of the nuclear receptor retinoid Z receptor/retinoid acid receptor-related orphan receptor alpha with potent antiarthritic activity. Journal of Biological Chemistry 1996; 271: 13515–13522PubMedCrossRefGoogle Scholar
  31. [31]
    Agez L, Laurent V, Pevet P et al. Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience 2007; 144: 522–530 DOI: 10.1016/j.neuroscience.2006.09.030PubMedCrossRefGoogle Scholar
  32. [32]
    Kiefer TL, Lai L, Yuan L et al. Differential regulation of estrogen receptor alpha, glucocorticoid receptor and retinoic acid receptor alpha transcriptional activity by melatonin is mediated via different G proteins. J Pineal Res 2005; 38: 231–239 DOI: 10.1111/j.1600-079X.2004.00198.xPubMedCrossRefGoogle Scholar
  33. [33]
    Pohanka M. Antioxidants countermeasures against sulfur mustard. Mini-Rev Med Chem 2012; 12: 742–748PubMedCrossRefGoogle Scholar
  34. [34]
    Tamura EK, Cecon E, Monteiro AWA et al. Melatonin inhibits LPS-induced NO production in rat endothelial cells. J Pineal Res 2009; 46: 268–274 DOI: 10.1111/j.1600-079X.2008.00657.xPubMedCrossRefGoogle Scholar
  35. [35]
    Camacho ME, Carrion MD, Lopez-Cara LC et al. Melatonin synthetic analogs as nitric oxide synthase inhibitors. Mini-Rev Med Chem 2012; 12: 600–617PubMedCrossRefGoogle Scholar
  36. [36]
    Koh PO. Melatonin regulates nitric oxide synthase expression in ischemic brain injury. J Vet Med Sci 2008; 70: 747–750 DOI: 10.1292/jvms.70.747PubMedCrossRefGoogle Scholar
  37. [37]
    Marczynski TJ, Yamaguchi N, Ling GM et al. Sleep induced by the administration of melatonin (5-methoxynacetyltryptamine) to the hypothalamus in unrestrained cats. Experimentia 1964; 20: 435–437CrossRefGoogle Scholar
  38. [38]
    Pieri C, Marra M, Moroni F et al. Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sciences 1994; 55: 271–276CrossRefGoogle Scholar
  39. [39]
    Pieri C, Moroni F, Marra M et al. Melatonin is an efficient antioxidant. Arch Gerontol Geriatr 1995; 20: 159–165PubMedCrossRefGoogle Scholar
  40. [40]
    Chen HY, Chen TY, Lee MY et al. Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood-brain barrier permeability after transient focal cerebral ischemia in mice. J Pineal Res 2006; 41: 175–182PubMedCrossRefGoogle Scholar
  41. [41]
    Shirazi A, Ghobadi G, Ghazi-Khansari M. A radiobiological review on melatonin: a novel radioprotector. J Radiat Res 2007; 48: 263–272PubMedCrossRefGoogle Scholar
  42. [42]
    Tan DX, Manchester LC, Terron MP et al. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 2007; 42: 28–42PubMedCrossRefGoogle Scholar
  43. [43]
    Fischer TW, Kleszczynski K, Hardkop LH et al. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVRinduced depletion, and protects against the formation of DNA damage (8-hydroxy-2′-deoxyguanosine) in ex vivo human skin. J Pineal Res 2012; doi: 10.1111/jpi.12018Google Scholar
  44. [44]
    Shagirtha K, Muthumani M, Prabu SM. Melatonin abrogates cadmium induced oxidative stress related neurotoxicity in rats. Eur Rev Med Pharmacol Sci 2011; 15: 1039–1050PubMedGoogle Scholar
  45. [45]
    Korkmaz GG, Uzun H, Cakatay U et al. Melatonin ameliorates oxidative damage in hyperglycemiainduced liver injury. Clinical and investigative medicine Medecine clinique et experimentale 2012; 35: E370PubMedGoogle Scholar
  46. [46]
    Ali SA, Aly HF, Faddah LM et al. Dietary supplementation of some antioxidants against hypoxia. World J Gastroenterol 2012; 18: 6379–6386PubMedCrossRefGoogle Scholar
  47. [47]
    Karaoz E, Gultekin F, Akdogan M et al. Protective role of melatonin and a combination of vitamin C and vitamin E on lung toxicity induced by chlorpyrifosethyl in rats. Exp Toxicol Pathol 2002; 54: 97–108PubMedCrossRefGoogle Scholar
  48. [48]
    Yellon SM, Tran LT. Photoperiod, reproduction, and immunity in select strains of inbred mice. J Biol Rhythms 2002; 17: 65–75PubMedCrossRefGoogle Scholar
  49. [49]
    Zhang Z, Inserra PF, Liang B et al. Melatonin, immune modulation and aging. Autoimmunity 1997; 26: 43–53PubMedCrossRefGoogle Scholar
  50. [50]
    Santello FH, Frare EO, dos Santos CD et al. Suppressive action of melatonin on the TH-2 immune response in rats infected with Trypanosoma cruzi. J Pineal Res 2008; 45: 291–296PubMedCrossRefGoogle Scholar
  51. [51]
    Brazao V, Del Vecchio Filipin M, Santello FH et al. Melatonin and zinc treatment: distinctive modulation of cytokine production in chronic experimental Trypanosoma cruzi infection. Cytokine 2011; 56: 627–632PubMedCrossRefGoogle Scholar
  52. [52]
    Xia MZ, Liang YL, Wang H et al. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J Pineal Res 2012; 53: 325–334CrossRefGoogle Scholar
  53. [53]
    Lee YD, Kim JY, Lee KH et al. Melatonin attenuates lipopolysaccharide-induced acute lung inflammation in sleep-deprived mice. J Pineal Res 2009; 46: 53–57PubMedCrossRefGoogle Scholar
  54. [54]
    Sinanoglu O, Sezgin G, Ozturk G et al. Melatonin with 1,25-Dihydroxyvitamin D3 Protects against Apoptotic Ischemia-Reperfusion Injury in the Rat Kidney. Ren Fail 2012; 34: 1021–1026 DOI: 10.3109/0886022x.2012.700887PubMedCrossRefGoogle Scholar
  55. [55]
    Cotto-Rios XM, Bekes M, Chapman J et al. Cell Rep. Deubiquitinases as a Signaling Target of Oxidative Stress 2012; doi: 10.1016/j.celrep.2012.11.011Google Scholar
  56. [56]
    Kodama R, Kato M, Furuta S et al. ROS-generating oxidases Nox1 and Nox4 contribute to oncogenic Ras-induced premature senescence. Genes Cells 2012; doi: 10.1111/gtc.12015Google Scholar
  57. [57]
    Liu RM, Choi J, Wu JH et al. Oxidative modification of nuclear mitogen-activated protein kinase phosphatase 1 is involved in transforming growth factor beta1-induced expression of plasminogen activator inhibitor 1 in fibroblasts. J Biol Chem 2010; 285: 16239–16247PubMedCrossRefGoogle Scholar
  58. [58]
    Cutando A, Lopez-Valverde A, Arias-Santiago S et al. Role of melatonin in cancer treatment. Anticancer Res 2012; 32: 2747–2753PubMedGoogle Scholar
  59. [59]
    Brigo F, Del Felice A. Melatonin as add-on treatment for epilepsy. Cochrane Database Syst Rev 2012; 6: CD006967PubMedGoogle Scholar
  60. [60]
    Boga JA, Coto-Montes A, Rosales-Corral SA et al. Beneficial actions of melatonin in the management of viral infections: a new use for this ”molecular handyman”? Rev Med Virol 2012; 22: 323–338 DOI: 10.1002/rmv.1714PubMedCrossRefGoogle Scholar
  61. [61]
    Pohanka M. Acetylcholinesterase inhibitors: a patent review (2008 — present). Expert Opin Ther Pat 2012; 22: 871–886 DOI: 10.1517/13543776.2012.701620PubMedCrossRefGoogle Scholar
  62. [62]
    Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 2011; 155: 219–229 DOI: 10.5507/bp.2011.036PubMedCrossRefGoogle Scholar
  63. [63]
    Martino M, Rocchi G, Escelsior A et al. Immunomodulation Mechanism of Antidepressants: Interactions between Serotonin/Norepinephrine Balance and Th1/Th2 Balance. Curr Neuropharmacol 2012; 10: 97–123PubMedCrossRefGoogle Scholar
  64. [64]
    Islam MA, Uddin MJ, Tholen E et al. Age-related changes in phagocytic activity and production of pro-inflammatory cytokines by lipopolysaccharide stimulated porcine alveolar macrophages. Cytokine 2012; 60: 707–717 DOI: 10.1016/j.cyto.2012.08.011PubMedCrossRefGoogle Scholar
  65. [65]
    van Besouw NM, Verjans G, Zuijderwijk JM et al. Systemic varicella zoster virus reactive effector memory T-cells impaired in the elderly and in kidney transplant recipients. J Med Virol 2012; 84: 2018–2025 DOI: 10.1002/jmv.23427PubMedCrossRefGoogle Scholar
  66. [66]
    Rybka J, Kedziora-Kornatowska K, Kedziora J et al. Immunosenescence and late life depression. Centr Eur J Immunol 2009; 34: 271–275Google Scholar
  67. [67]
    Manikonda PK, Jagota A. Melatonin administration differentially affects age-induced alterations in daily rhythms of lipid peroxidation and antioxidant enzymes in male rat liver. Biogerontology 2012; 13: 511–524 DOI: 10.1007/s10522-012-9396-1PubMedCrossRefGoogle Scholar
  68. [68]
    Rastmanesh R. Potential of melatonin to treat or prevent age-related macular degeneration through stimulation of telomerase activity. Med Hypotheses 2011; 76: 79–85 DOI: 10.1016/j.mehy.2010.08.036PubMedCrossRefGoogle Scholar
  69. [69]
    Mozaffari S, Abdollahi M. Melatonin, a Promising Supplement in Inflammatory Bowel Disease: A Comprehensive Review of Evidences. Curr Pharm Design 2011; 17: 4372–4378CrossRefGoogle Scholar
  70. [70]
    Huai JP, Sun XC, Chen MJ et al. Melatonin attenuates acute pancreatitis-associated lung injury in rats by modulating interleukin 22. World Journal of Gastroenterology 2012; 18: 5122–5128 DOI: 10.3748/wjg.v18.i36.5122PubMedCrossRefGoogle Scholar
  71. [71]
    Srinivasan V, Spence DW, Trakht I et al. Immunomodulation by melatonin: Its significance for seasonally occurring diseases. Neuroimmunomodulation 2008; 15: 93–101 DOI: 10.1159/000148191PubMedCrossRefGoogle Scholar
  72. [72]
    Lissoni P. Is there a role for melatonin in supportive care? Support Care Cancer 2002; 10: 110–116 DOI: 10.1007/s005200100281PubMedCrossRefGoogle Scholar
  73. [73]
    Bekyarova G, Bratchkova Y, Tancheva S et al. Effective melatonin protection of burn-induced hepatic disorders in rats. Cent Eur J Med 2012; 7: 533–538 DOI: 10.2478/s11536-012-0006-zCrossRefGoogle Scholar
  74. [74]
    Bekyarova G, Apostolova M, Kotzev I. Melatonin protection against burn-induced hepatic injury by down-regulation of nuclear factor kappa B activation Int J Immunopathol Pharmacol 2012; 25: 591–596PubMedGoogle Scholar
  75. [75]
    Terry PD, Villinger F, Bubenik GA et al. Melatonin and ulcerative colitis: evidence, biological mechanisms, and future research. Inflamm Bowel Dis 2009; 15: 134–140 DOI: 10.1002/ibd.20527PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Military Health SciencesUniversity of DefenseHradec KraloveCzech Republic

Personalised recommendations