Successful management of mild atopic dermatitis in adults with probiotics and emollients
- 102 Downloads
Abstract
Atopic dermatitis is characterized by impaired skin and mucous membrane barrier function. Measures improving barrier integrity decrease the influence of environmental factors that might exacerbate inflammation. Ten adult patients with mild-to-moderate atopic dermatitis consumed for three months fermented with potent antioxidative probiotic, L. fermentum ME-3 (DSM 14241) goat milk 200 mg/day. A control group consisted of six patients, not supplemented by probiotic. All patients used emollients regularly. Skin iron levels, glutathione redox ratios (GSSG/GSH), diene conjugate (DC) amounts, blood glutathione status, oxidized low-density lipoprotein (oxLDL), and total antioxidativity was measured at the baseline and after three months. A significant decrease in skin iron levels, DC amounts, and glutathione redox ratio occurred in the probiotic-supplemented group compared to the control group (P < 0.05 for all indices). In the same group, blood levels of oxLDL decreased (p < 0.05), and GSH levels increased (P < 0.001) with concomitant improvement in the GSSG/GSH ratio. Blood antioxidativity markers also showed an improvement. The results of our study demonstrate that regular use of probiotics with antioxidative properties coupled with the use of lipid-containing emollients considerably decreases inflammation and concomitant oxidative stress in adult patients with mild-to-moderate atopic dermatitis. This effect was observed both in the skin and in the blood.
Keywords
Atopic dermatitis Oxidative stress Glutathione redox ratio OxLDL L. fermentum ME-3Abbreviations
- AD
atopic dermatitis
- DC
diene conjugates
- GSH
reduced glutathione
- GSSG
oxidized glutathione
- GSSG/GSH
glutathione redox ratio
- OxS
oxidative stress
- TAA
total antioxidative activity
- TAC
total antioxidant capacity
Preview
Unable to display preview. Download preview PDF.
References
- [1]Proksch E., Fölster-Holst R., Jensen J-M., Skin barrier function, epidermal proliferation and differentiation in eczema, J. Dermatol. Sci., 2006, 43, 159–169PubMedCrossRefGoogle Scholar
- [2]Leung D.Y.M., Boguniewicz M., Howell M.D., Nomura I., Hamid Q. A., New insights into atopic dermatitis, J. Clin. Invest., 2004, 113, 651–7PubMedGoogle Scholar
- [3]Isolauri E., Probiotics in human disease, Am. J. Clin. Nutr., 2001, 73, 1142S–6SPubMedGoogle Scholar
- [4]Cork M.J., Robinson D.A., Vasilopoulos Y., Ferguson A., Moustafa M., MacGowan A., et al., New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions, J. Allergy Clin. Immunol., 2006, 118, 3–21PubMedCrossRefGoogle Scholar
- [5]Isolauri E., Arvola T., Sütas Y., Moilanen E., Salminen S., Probiotics in the management of atopic eczema, Clin. Exp. Allergy, 2000, 30, 1604–10PubMedCrossRefGoogle Scholar
- [6]Rosenfeldt V., Benfeldt E., Nielsen D.M., Michaelsen K.F., Jeppesen D.L., Valerius N.H., et al., Effect of probiotic Lactobacillus strains in children with atopic dermatitis, J. Allergy Clin. Immunol., 2003, 111, 389–95PubMedCrossRefGoogle Scholar
- [7]Weston S., Halbert A., Richmond P., Prescott S. L., Effects of probiotics on atopic dermatitis: a randomized controlled trial, Arch. Dis. Child, 2005, 90, 892–897PubMedCrossRefGoogle Scholar
- [8]Prescott S.L., Björksten B., Probiotics for the prevention or treatment of allergic diseases, J. Allergy Clin. Immunol., 2007, 120, 255–262PubMedCrossRefGoogle Scholar
- [9]Peuhkuri K., Lähteenmäki T., Sievi E., Saxelin M., Vapaatalo H., Korpela R., Antioxidative properties of lactobacillus GG measured as prostacyclin and nitric oxide production in endothelial cell culture, Nutr. Today, 1996, 31, 53S–54SCrossRefGoogle Scholar
- [10]Kullisaar T., Zilmer M., Mikelsaar M., Vihalemm T., Annuk H., Kairane C., et al., Two antioxidative lactobacilli strains as promising probiotics, Int. J. Food Microbiol., 2002, 72, 215–24PubMedCrossRefGoogle Scholar
- [11]Kullisaar T., Songisepp E., Mikelsaar M., Zilmer K., Vihalemm T., Zilmer M., Antioxidative probiotic fermented goats’ milk decreases oxidative stressmediated atherogenicity in human subjects, Br. J. Nutr., 2003, 90, 449–56PubMedCrossRefGoogle Scholar
- [12]Severity scoring of atopic dermatitis: the SCORAD index. Consensus report of the European Task Force on Atopic Dermatitis, Dermatology, 1993, 186, 23–31Google Scholar
- [13]Ristimäe T., Zilmer M., Zilmer K., Kairane C., Kullisaar T., Teesalu, R., Effects of low dose aspirin on the markers of oxidative stress, Cardiovasc. Drug Ther., 1999, 13, 485–490CrossRefGoogle Scholar
- [14]Griffith O.W., Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine, Anal. Biochem., 1980, 106, 207–12PubMedCrossRefGoogle Scholar
- [15]Kohen R., Skin antioxidants: their role in aging and in oxidative stress — new approaches for their evaluation, Biomed. Pharmacother., 1999, 53, 181–92PubMedCrossRefGoogle Scholar
- [16]Young I.S., Woodside J.V., Antioxidants in health and disease, J. Clin. Pathol., 2001, 54, 176–86PubMedCrossRefGoogle Scholar
- [17]Luyer M.D., Buurman W.A., Hadfoune M., Speelmans G., Knol J., Jakobs J.A., et al., Strainspecific effects of probiotics on gut barrier integrity following hemorrhagic shock, Infect. Immun., 2005, 73, 3686–3692PubMedCrossRefGoogle Scholar
- [18]Murch S.H., Probiotics as mainstream allergy therapy?, Arch. Dis. Child, 2005, 90, 881–882PubMedCrossRefGoogle Scholar
- [19]Ouwehand A., Isolauri E., Salminen S., The role of intestinal microflora for the development of the immune system in early childhood, Eur. J. Nutr., 2002, 41 (suppl 1), 1/32–1/37Google Scholar
- [20]Rachmilewitz D., Karmeli F., Shteingart S., Lee J., Takabayashi K., Raz E., Immunostimulatory oligonucleotides inhibit colonic proinflammatory cytokine production in ulcerative colitis, Inflamm. Bowel Dis., 2006, 12, 339–345PubMedCrossRefGoogle Scholar
- [21]Memon R.A., Staprans I., Noor M., Holleran W.M., Uchida Y., Moser A.H., et al., Infection and inflammation induce LDL oxidation in vivo, Arterioscler. Thromb. Vasc. Biol., 2000, 20, 1536–42PubMedGoogle Scholar
- [22]Leveque N., Robin S., Muret P., Mac-Mary S., Makki S., Humbert P., High iron and ascorbic acid concentrations in the dermis of atopic dermatitis patients, Dermatology, 2003, 207, 261–264PubMedCrossRefGoogle Scholar
- [23]Pastore A., Federici G., Bertini E., Piemonte F., Analysis of glutathione: implication in redox and detoxification, Clin. Chim. Acta, 2003, 333, 19–39PubMedCrossRefGoogle Scholar
- [24]Hall A.G., The role of glutathione in the regulation of apoptosis, Eur. J. Clin. Invest., 1999, 29, 238–245PubMedCrossRefGoogle Scholar
- [25]Kaur S., Zilmer M., Eisen M., Kullisaar T., Rehema A., Vihalemm T., Patients with allergic and irritant contact dermatitis are characterized by striking change of iron and oxidized glutathione status in nonlesional area of the skin, J. Invest. Dermatol., 2001, 116, 886–90PubMedCrossRefGoogle Scholar
- [26]Rhie G., Shin M.H., Seo J.Y., Choi W.W., Cho K.H., Kim K.H., et al., Aging-and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo, J. Invest. Dermatol., 2001, 117, 1212–1217PubMedCrossRefGoogle Scholar
- [27]Nogués M.R., Giralt M., Cervelló I., Del Castillo D., Espeso O., Argany N., et al., Parameters related to oxygen free radicals in human skin: a study comparing healthy epidermis and skin cancer tissue, J. Invest. Dermatol., 2002, 119, 645–652PubMedCrossRefGoogle Scholar
- [28]Bengtsson Å, Lundberg M., Avila-Carino J., Jacobsson G., Holmgren A., Scheynius A., Thiols decrease cytokine levels and down-regulate the expression of CG30 on human allergen-specific T helper (Th) 0 and Th2 cells, Clin. Exp. Immunol., 2001, 123, 350–360PubMedCrossRefGoogle Scholar