Central European Journal of Medicine

, Volume 3, Issue 1, pp 9–19 | Cite as

Coffee consumption and type 2 diabetes — An extensive review

Review Article
  • 131 Downloads

Abstract

Coffee is a complex mixture of potentially active chemicals. It contains significant amounts of phenolic polymers, chlorogenic acid and also caffeine. Agricultural factors, roasting, blending, and brewing determine coffee’s chemical composition. Recent epidemiological studies suggest that habitual coffee consumption may help to prevent some chronic diseases including type 2 diabetes. Despite reports from the clinical trials of the effect of caffeine on decreasing insulin sensitivity, long-term prospective studies revealed that coffee may improve fasting glucose, glucose tolerance and insulin sensitivity as well. In the most recent publication habitual coffee drinkers have a lower total and cardiovascular mortality rate among diabetic subjects.

Keywords

Coffee Type 2 diabetes Glucose tolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wild S., Roglic G., Green A., Sicree R., King H., Global prevalence of diabetes: estimates for the year 2000 and projections for 2030, Diabetes Care, 2004, 27, 1047–1053PubMedCrossRefGoogle Scholar
  2. [2]
    Amos A.F., McCarty D.J. and Zimmet P., The rising global burden of diabetes and its complications: Estimates and projections to the year 2010, Diabet. Med., 1997, 14, S7–S85CrossRefGoogle Scholar
  3. [3]
    Bennett P.H., Type 2 diabetes among the Pima Indians of Arizona: an epidemic attributable to environmental change, Nutrition Reviews, 1999, 57, S51–54PubMedCrossRefGoogle Scholar
  4. [4]
    Lako J.V., Nguyen V.C., Dietary patterns and risk factors of diabetes mellitus among urban indigenous women in Fiji, Asia Pacific J. of Clin. Nutr., 2001, 10, 188–193CrossRefGoogle Scholar
  5. [5]
    Hetzel B., Michael T., The lifestyle factor: Lifestyle and health, Melbourne Pinguin, 1987.Google Scholar
  6. [6]
    Tuomilehto J., Tuomilehto-Wolf E., Zimmet P., Alberti K.G.M.M., Knowler W.C., Primary prevention of diabetes mellitus, In: Alberti K.G.M.M., Zimmet P., DeFronzo R.A., Keen H. (Eds.) International Textbook of Diabetes Mellitus, 2nd ed., Wiley, Chichester New York Brisban Toronto, 1997Google Scholar
  7. [7]
    Clifford M.N., Chlorogenic acid and other cinnamates-nature, occurrence and dietary burden, J. Sci. Food Agric., 1999, 79, 362–372CrossRefGoogle Scholar
  8. [8]
    Clifford M.N., Chlorogenic acid and other cinnamates-nature, occurrence, dietary burden, absorption and metabolism, J. Sci. Food Agric., 2000, 80, 1033–1043CrossRefGoogle Scholar
  9. [9]
    Nauck M.A., Heimesaat M.M., Orskov C., Holst J.J., Ebert R., Creutzfeldt W., Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus, J. Clin. Invest., 1993 91, 301–307PubMedGoogle Scholar
  10. [10]
    Meier J.J., Hucking K., Holst J.J., Deacon C.F., Schmiegel W.H., Nauck M.A., Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes”, Diabetes, 2001, 50, 2497–2504PubMedCrossRefGoogle Scholar
  11. [11]
    Tuomilehto J., Tuomilehto-Wolf E., Virtala E., LaPorte R., Coffee consumption as trigger for insulin dependent diabetes mellitus in childhood, B.M.J., 1990, 300, 642–643Google Scholar
  12. [12]
    Barbagallo M., Dominguez L.J., Galioto A., Ferlisi A., Cani C., Malfa L., et al., Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X, Mol. Aspects Med., 2003, 24, 39–52PubMedCrossRefGoogle Scholar
  13. [13]
    Paolisso G., Scheen A., D’Onofrio F., Lefebvre P., Magnesium and glucose homeostasis, Diabetologia, 1990, 33, 511–514PubMedCrossRefGoogle Scholar
  14. [14]
    Paolisso G., Ravussin E., Intracellular magnesium and insulin resistance: results in Pima Indians and Caucasians, J. Clin. Endocrinol. Metab., 1995, 80, 1382–1385PubMedCrossRefGoogle Scholar
  15. [15]
    Paolisso G., Barbagallo M., Hypertension, diabetes mellitus, and insulin resistance: the role of intracellular magnesium, Am. J. Hypertens., 1997, 10, 346–355PubMedCrossRefGoogle Scholar
  16. [16]
    Matsui T., Ueda T., Oki T., Sugita K., Terahara N., Matsumoto K., alpha-Glucosidase inhibitory action of natural acylated anthocyanins. 2. Alpha-Glucosidase inhibition by isolated acylated anthocyanins, J. Agric. Food. Chem., 2001, 49, 1952–1956PubMedCrossRefGoogle Scholar
  17. [17]
    Kobayashi Y., Suzuki M., Satsu H., Arai S., Hara Y., Suzuki K., et al., Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism, J. Agric. Food. Chem., 2000, 48, 5618–5623PubMedCrossRefGoogle Scholar
  18. [18]
    Nauck M.A., Heimesaat M.M., Orskov C., Holst J.J., Ebert R., Creutzfeldt W., Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus, J. Clin. Invest., 1993, 91, 301–307PubMedGoogle Scholar
  19. [19]
    Meier J.J., Hucking K., Holst J.J., Deacon C.F., Schmiegel W.H., Nauck M.A., Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes, Diabetes, 2001, 50, 2497–2504PubMedCrossRefGoogle Scholar
  20. [20]
    Newgard C.B., Foster D.W., McGarry J.D., Evidence for suppression of hepatic glucose-6-phosphatase with carbohydrate feeding, Diabetes, 1984, 33, 192–195PubMedCrossRefGoogle Scholar
  21. [21]
    Youn J.H., Youn M.S., Bergman R.N., Synergism of glucose and fructose in net glycogen synthesis in perfused rat livers, J. Biol. Chem., 1986, 261, 15960–15969PubMedGoogle Scholar
  22. [22]
    Arion W.J., Canfield W.K., Ramos F.C., Schindler P.W., Burger H.J., Hemmerle H., et al., Chlorogenic acid and hydroxynitrobenzaldehyde: new inhibitors of hepatic glucose 6-phosphatase, Arch. Biochem. Biophys., 1997, 339, 315–322PubMedCrossRefGoogle Scholar
  23. [23]
    Andrade-Cetto A., Wiedenfeld H., Hypoglycemic effect of Cecropia obtusifolia on streptozotocin diabetic rats, J. Ethnopharmacol., 2001, 78, 145–149PubMedCrossRefGoogle Scholar
  24. [24]
    Keijzers G.B., De Galan B.E., Tack C.J., Smits P., Caffeine can decrease insulin sensitivity in humans, Diabetes Care, 2002, 25, 364–369PubMedCrossRefGoogle Scholar
  25. [25]
    Denaro C.P., Brown C.R., Jacob P., Benowitz N.L., Effects of caffeine with repeated dosing, Eur. J. Clin. Pharmacol., 1991, 40, 273–278PubMedCrossRefGoogle Scholar
  26. [26]
    Arnlov J., Vessby B., Riserus U., Coffee consumption and insulin sensitivity, JAMA, 2004, 291, 1199–1201.PubMedCrossRefGoogle Scholar
  27. [27]
    Yeni-Komshian H., Carantoni M., Abbasi F., Reaven G.M., Relationship between several surrogate estimates of insulin resistance and quantification of insulin-mediated glucose disposal in 490 healthy nondiabetic volunteers, Diabetes Care, 2002, 23, 171–175CrossRefGoogle Scholar
  28. [28]
    Laakso M., How good is insulin level for insulin resistance?, Am. J. Epidemiol., 1992, 137, 959–965Google Scholar
  29. [29]
    Ferrannini E. Mari A., How to measure insulin sensitivity, J. Hypertens., 1998, 16, 895–906PubMedCrossRefGoogle Scholar
  30. [30]
    Haffner S.M., Valdez R.A., Hazuda H.P., Mitchell B.D., Moralles P.A. Stern M.P., Prospective analaysis of the insulin-resistance syndrome (syndrome X), Diabetes, 1992, 41, 715–722PubMedCrossRefGoogle Scholar
  31. [31]
    Zavaroni I., Bonora E., Pagliara M., Dall’Aglio E., Luchetti L., Buonanno G., et al., Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance, N. Eng. J. Med., 1989, 320, 702–706CrossRefGoogle Scholar
  32. [32]
    Despres J.P., Lamarch B., Maurige P., Cantin B., Dagenais G.R., Moorjani S., et al., Hyperinsulinemia as an independent risk factor for ischemic heart disease, N. Eng. J. Med., 1996, 334, 952–957CrossRefGoogle Scholar
  33. [33]
    Fontbonne A., Charles M.A., Thibult N., Richard J.L., Claude J.R., Warnet J.M., et al., Hyperinsulinemia as a predictor of coronary heart disease mortality in healthy population: the Paris Prospective Study, 15-year follow-up, Diabetologia, 1991, 34, 356–361PubMedCrossRefGoogle Scholar
  34. [34]
    Panagiotakos D.B., Pitsavos C., Zampelas A., Zeimbekis A., Chrysohoou C., Papademetriou L., et al., The association between coffee consumption and plasma total homocysteine levels: the “ATTICA” study, Heart. Vessels., 2004, 19, 280–286PubMedCrossRefGoogle Scholar
  35. [35]
    Panagiotakos D.B., Pitsavos C,. Zeimbekis A., Chrysohoou C., Stefanadis C., The association between lifestyle-related factors and plasma homocysteine levels in healthy individuals from the “ATTICA” Study, Int. J. Cardiol., 2005, 98, 471–477PubMedCrossRefGoogle Scholar
  36. [36]
    Jacques P.F., Bostom A.G., Wilson P.W., Rich S., Rosenberg I.H., Selhub J., Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort, Am. J. Clin. Nutr., 2001, 73, 613–621PubMedGoogle Scholar
  37. [37]
    Martos R., Valle M., Morales R., Canete R., Gavilan M.I., Sanchez-Margalet V., Hyperhomocysteinemia correlates with insulin resistance and low-grade systemic inflammation in obese prepubertal children, Metabolism., 2006, 55, 72–77PubMedCrossRefGoogle Scholar
  38. [38]
    Cho N.H., Lim S., Jang H.C., Park H.K., Metzger B.E., Elevated homocysteine as a risk factor for the development of diabetes in women with a previous history of gestational diabetes mellitus: a 4-year prospective study, Diabetes Care., 2005, 28, 2750–2755PubMedCrossRefGoogle Scholar
  39. [39]
    Peyrin-Biroulet L., Gueant J.L., Roblin X., Coffee and diabetes: is homocysteine the missing link?, Arch. Intern. Med., 2007, 167, 204PubMedCrossRefGoogle Scholar
  40. [40]
    Mascitelli L., Pezzetta F., Sullivan J.L., Inhibition of iron absorption by coffee and the reduced risk of type 2 diabetes mellitus, Arch. Intern. Med., 2007, 167, 204–205PubMedCrossRefGoogle Scholar
  41. [41]
    Jiang R., Manson J.E., Meigs J.B., Ma J., Rifai N., Hu F.B., Body iron stores in relation to risk of type 2 diabetes in apparently healthy women, JAMA., 2004, 291, 711–717PubMedCrossRefGoogle Scholar
  42. [42]
    Facchini F.S., Saylor K.L., Effect of iron depletion on cardiovascular risk factors: studies in carbohydrate intolerant patients, Ann. N. Y. Acad. Sci. 2002, 967, 342–351PubMedCrossRefGoogle Scholar
  43. [43]
    Petrie H.J., Chown S.E., Belfie L.M., Duncan A.M., McLaren D.H., Conquer J.A., et al., Caffeine ingestion increases the insulin response to an oral-glucose-tolerance test in obese men before and after weight loss, Am. J. Clin. Nutr., 2004, 80, 22–28PubMedGoogle Scholar
  44. [44]
    Graham T.E., Sathasivam P., Rowland M., Marko N., Greer F., Battram D., Caffeine ingestion elevates plasma insulin response in humans during an oral glucose tolerance test, Can. J. Physiol. Pharmacol., 2001, 79, 559–565PubMedCrossRefGoogle Scholar
  45. [45]
    Greer F., Hudson R., Ross R., Graham T., Caffeine ingestion decreases glucose disposal during a hyperinsulinemic-euglycemic clamp in sedentary humans, Diabetes, 2001, 50, 2349–2354PubMedCrossRefGoogle Scholar
  46. [46]
    Naismith, D.J., Akinyanju, P.A., Szanto, S., Yudkin J., The effect in volunteers of coffee and decaffeinated coffee on blood glucose, insulin, plasma lipids and some factors involved in blood clotting, Nutr. Metab., 1970, 12, 144–151PubMedCrossRefGoogle Scholar
  47. [47]
    Van Dam R.M., Pasman W.J., Verhoef P., Effects of coffee consumption on fasting blood glucose and insulin concentrations: randomized controlled trials in healthy volunteers, Diabetes Care, 2004, 27, 2990–2992PubMedCrossRefGoogle Scholar
  48. [48]
    Battram D.S., Arthur R., Weekes A., Graham T.E., The glucose intolerance induced by caffeinated coffee ingestion is less pronounced than that due to alkaloid caffeine in men, J. Nutr., 2006, 136, 1276–1280PubMedGoogle Scholar
  49. [49]
    Yamaji T., Mizoue T., Tabata S., Ogawa S., Yamaguchi K., Shimizu E., et al., Coffee consumption and glucose tolerance status in middle-aged Japanese men, Diabetologia, 2004, 47, 2145–2151PubMedCrossRefGoogle Scholar
  50. [50]
    Soriguer F., Rojo-Martinez G., de Antonio I.E., Coffee consumption and type 2 diabetes mellitus, Ann. Intern. Med. 2004, 141, 321–323PubMedGoogle Scholar
  51. [51]
    Agardh E.E., Carlsson S., Ahlbom A., Efendic S., Grill V., Hammar N., et al., Coffee consumption, type 2 diabetes and impaired glucose tolerance in Swedish men and women, J. Intern. Med., 2004, 255, 645–652PubMedCrossRefGoogle Scholar
  52. [52]
    Van Dam R.M., Dekker J.M., Nijpels G., Stehouwer C.D., Bouter L.M., Heine R.J., Hoorn study: “Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: the Hoorn Study, Diabetologia, 2004, 47, 2152–2159PubMedCrossRefGoogle Scholar
  53. [53]
    Bidel S., Hu G., Sundvall J., Kaprio J., Tuomilehto J., Effects of coffee consumption on glucose tolerance and serum glucose and insulin levels-A cross sectional analysis, Horm. Metab. Res., 2006, 38, 38–43PubMedCrossRefGoogle Scholar
  54. [54]
    Van Dam R.M., Feskens E.J., Coffee consumption and risk of type 2 diabetes mellitus, Lancet, 2002, 360, 1477–1478PubMedCrossRefGoogle Scholar
  55. [55]
    Salazar-Martinez E., Willett W.C., Ascherio A., Manson J.E., Leitzmann M.F., Stampfer M.J., et al., Coffee consumption and risk for type 2 diabetes mellitus, Ann. Intern. Med., 2004, 140, 1–8PubMedGoogle Scholar
  56. [56]
    Carlsson S., Hammar N., Grill V., Kaprio J., Coffee consumption and risk of type 2 diabetes in Finnish twins, Int. J. Epidemiol., 2004, 3, 616–617CrossRefGoogle Scholar
  57. [57]
    Rosengren A., Dotevall A., Wilhelmsen L., Thelle D., Johansson S., Coffee and incidence of diabetes in Swedish women: a prospective 18-year follow up study, J. Intern. Med., 2004, 255, 89–95PubMedCrossRefGoogle Scholar
  58. [58]
    Paynter N.P., Yeh H.C., Voutilainen S., Schmidt M.I., Heiss G., Folsom A.R., et al., Coffee and sweetened beverage consumption and the risk of type 2 diabetes mellitus: the atherosclerosis risk in communities study, Am. J. Epidemiol., 2006, 164, 1075–1084PubMedCrossRefGoogle Scholar
  59. [59]
    Pereira M.A., Parker E.D., Folsom A.R., Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women, Arch. Intern. Med., 2006, 166, 1311–1316PubMedCrossRefGoogle Scholar
  60. [60]
    Van Dam R.M., Willett W.C., Manson J.E., Hu F.B., Coffee, Caffeine, and Risk of Type 2 Diabetes: A prospective cohort study in younger and middle-aged U.S. women, Diabetes Care, 2006, 29, 398–403PubMedCrossRefGoogle Scholar
  61. [61]
    Iso H., Date C., Wakai K., Fukui M., Tamakoshi A., The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults, Ann. Intern. Med., 2006, 144, 554–562PubMedGoogle Scholar
  62. [62]
    Reunanen A., Heliovaara M., Aho K., Coffee consumption and risk of type 2 diabetes mellitus, Lancet, 2003, 361, 702–703PubMedCrossRefGoogle Scholar
  63. [63]
    Tuomilehto J., Hu G., Bidel S., Lindstrom J., Jousilahti P., Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women, JAMA, 2004, 291, 1213–1219PubMedCrossRefGoogle Scholar
  64. [64]
    Saremi A., Tulloch-Reid M., Knowler W.C., Coffee consumption and the incidence of type 2 diabetes”, Diabetes Care, 2003, 7, 2211–2212CrossRefGoogle Scholar
  65. [65]
    Van Dam R.M., Hu F.B., Coffee consumption and risk of type 2 diabetes: a systematic review, JAMA, 2005, 294, 97–104PubMedCrossRefGoogle Scholar
  66. [66]
    Hu G., Jousilahti P., Peltonen M., Bidel S., Tuomilehto J., Joint association of coffee consumption and other factors to the risk of type 2 diabetes: a prospective study in Finland, Int. J. Obes., 2006, 30, 1742–1749CrossRefGoogle Scholar
  67. [67]
    Perry I.J., Wannamethee S.G., Sharper A.G., Prospective study of serum g-glutamyltransferase and risk of NIDDM, Diabetes Care, 1998, 21,732–737PubMedCrossRefGoogle Scholar
  68. [68]
    Nakanishi N., Suzuki K., Tatar K., Serum g-glutamyltransferase and risk of metabolic syndrome and type 2 diabetes in middle-aged Japanese men, Diabetes Care, 2004, 27, 1427–1432PubMedCrossRefGoogle Scholar
  69. [69]
    Bidel S., Silventoinen K., Hu G., Lee D.H., Kaprio J., Tuomilehto J., Coffee consumption, serum gamma-glutamyltransferase and risk of type II diabetes, Eur. J. Clin. Nutr., 2007, doi:10.1038/sj.ejcn.1602712, 1–8Google Scholar
  70. [70]
    Lee D.H., Jacobs D.R. Jr., Gross M., Kiefe C.I., Roseman J., Lewis C.E., et al., Gammaglutamyltransferase is a predictor of incident diabetes and hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) Study, Clin. Chem., 2003, 49, 1358–1366PubMedCrossRefGoogle Scholar
  71. [71]
    Bidel S., Hu G., Qiao Q., Jousilahti P., Antikainen R., Tuomilehto J., Coffee consumption and risk of total and cardiovascular mortality among patients with type 2 diabetes, Diabetologia, 2006, 49, 2618–2626PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of Health Promotion and Chronic Diseases PreventionNational Public Health InstituteHelsinkiFinland
  2. 2.Department of Public HealthUniversity of HelsinkiHelsinkiFinland
  3. 3.South Ostrobothnia Central HospitalSeinäjokiFinland

Personalised recommendations