Central European Journal of Biology

, Volume 9, Issue 8, pp 811–822 | Cite as

Effect of altered snow conditions on decomposition in three subalpine plant communities

  • Miroslav Zeidler
  • Martin Duchoslav
  • Marek Banaš
Research Article


Snow cover and its spatio-temporal changes play a crucial role in the ecological functioning of mountains. Some human activities affecting snow properties may cause shifts in the biotic components of ecosystems, including decomposition. However, these activities remain poorly understood in subalpine environments. We explored the effect of human-modified snow conditions on cellulose decomposition in three vegetation types. Snow density, soil temperature, and the decomposition of cellulose were studied in Athyrium, Calamagrostis, and Vaccinium vegetation types, comparing stands intersected by groomed ski slope and natural (outside the ski slope) stands. Increased snow density caused the deterioration of snow insulation and decreased the soil temperature inside the ski slope only slightly in comparison with that outside the ski slope in all vegetation types studied. The decomposition was apparently lower in Athyrium vegetation relative to the other vegetation types and strongly (Athyrium vegetation) to weakly lower (other vegetation types) in groomed than in ungroomed stands. Wintertime, including the melting period, was decisive for overall decomposition. Our results suggest that differences in decomposition are influenced by ski slope operations and vegetation type. Alterations in snow conditions appeared to be subtle and long-term but with important consequences for conservation management.


Decomposition rate Snow Cellulose Ski slope Subalpine vegetation Temperature Hrubý Jeseník Mts. the Czech Republic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gavazov K.S., Dynamics of alpine plant litter decomposition in a changing climate, Plant Soil, 2010, 337, 19–32CrossRefGoogle Scholar
  2. [2]
    Jones H.G., Pomeroy J.W., Walker D.A., Hoham R.W., Snow ecology, Cambridge University Press, Cambridge, UK, 2001Google Scholar
  3. [3]
    Körner C., Alpine plant life, 2nd ed., Springer-Verlag, Berlin, 2003CrossRefGoogle Scholar
  4. [4]
    Walker M.D., Walker D.A., Welker J.M., Arft A.M., Bardsley T., Brooks P.D., et al., Longterm experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra, Hydrol. Process., 1999, 13, 2315–2330CrossRefGoogle Scholar
  5. [5]
    Baiderin V.V., Winter recreation and subnival plant development, Sov. J. Ecol., 1982, 13, 287–291Google Scholar
  6. [6]
    Rixen C., Stoeckli V., Huovinen C., Huovinen K., The phenology of four subalpine herbs in relation to snow cover characteristics, In: Dolman A.J., Hall A.J., Kavvas M.L., Oki T., Pomeroy J.W. (Eds.), Soil-vegetation-atmosphere transfer schemes and large-scale hydrological models, (18–27 July 2001, Maastricht, the Netherlands) International Association of Hydrological Sciences, Wallingford, UK, 2001, 359–362Google Scholar
  7. [7]
    Heegaard E., A model of alpine species distribution in relation to snowmelt time and altitude, J. Veg. Sci., 2002, 13, 493–504CrossRefGoogle Scholar
  8. [8]
    Huelber K., Gottfried M., Pauli H., Reiter K., Winkler M., Grabherr G., Phenological responses of snowbed species to snow removal dates in the Central Alps: Implications for climate warming, Arct. Antarct. Alp. Res., 2006, 38, 99–103CrossRefGoogle Scholar
  9. [9]
    Kudo G., Hirao A. S., Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: implications for globalchange impacts, Popul. Ecol., 2006, 48, 49–58CrossRefGoogle Scholar
  10. [10]
    Zeidler M., Banaš M., Duchoslav M., Carbohydrate reserve changes in below-ground biomass of subalpine grasslands as a result of different snow conditions (the Hrubý Jeseník Mts., Czech Republic), Pol. J. Ecol., 2008, 56, 75–83Google Scholar
  11. [11]
    Baptist F., Yoccoz N.G., Choler P., Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient, Plant Soil, 2010, 328, 397–410CrossRefGoogle Scholar
  12. [12]
    Hejcman M., Dvořák I.J., Kociánová M., Pavlů V., Nežerková P., Vítek O., et al., Snow depth and vegetation pattern in a late-melting snowbed analyzed by GPS and GIS in the Giant Mountains, Czech Republic, Arct. Antarct. Alp. Res., 2006, 38, 90–98CrossRefGoogle Scholar
  13. [13]
    Walker D.A., Halfpenny J.C., Walker M.D., Carol A., Long-term studies of snow-vegetation interactions, Bioscience, 1993, 43, 287–301CrossRefGoogle Scholar
  14. [14]
    Aerts R., The freezer defrosting: global warming and litter decomposition rates in cold biomes, J. Ecol., 2006, 94, 713–724CrossRefGoogle Scholar
  15. [15]
    Edwars A.C., Scalenghe R., Freppaz M., Changes in the seasonal snow cover of alpine regions and its effects on soil processes: a review, Quatern. Int., 2007, 162–163, 172–181CrossRefGoogle Scholar
  16. [16]
    Clement J.C., Robson T.M., Guillemin R., Saccone P., Lochet J., Aubert S., et al., The effects of snow-N deposition and snowmelt dynamics on soil-N cycling in marginal terraced grasslands in the French Alps, Biogeochemistry, 2012, 108, 297–315CrossRefGoogle Scholar
  17. [17]
    Rixen C., Freppaz M., Stoeckli V., Huovinen C., Huovinen K., Wipf S., Altered snow density and chemistry change soil nitrogen mineralization and plant growth, Arct. Antarct. Alp. Res., 2008, 40, 568–575CrossRefGoogle Scholar
  18. [18]
    Wipf S., Rixen C., A review of snow manipulation experiments in Arctic and alpine tundra ecosystems, Polar Res., 2010, 29, 95–109CrossRefGoogle Scholar
  19. [19]
    Hédl R., Houška J., Banaš M., Zeidler M., Effects of skiing and slope gradient on topsoil properties in an alpine environment, Pol. J. Ecol., 2012, 60, 491–501Google Scholar
  20. [20]
    Rixen C., Stoeckli V., Ammann W., Does artificial snow production affect soil and vegetation of ski pistes? A review, Perspect. Plant Ecol. Evol.Syst., 2003, 5, 219–230CrossRefGoogle Scholar
  21. [21]
    Roux-Fouillet P., Wipf S., Rixen C., Long-term impacts of ski piste management on alpine vegetation and soils, J. Appl. Ecol., 2011, 48, 906–915CrossRefGoogle Scholar
  22. [22]
    Keller T., Pielmeier C., Rixen C., Gadient F., Gustafsson D., Staehli M., Impact of artificial snow and ski-slope grooming on snowpack properties and soil thermal regime in a sub-alpine ski area, Ann. Glaciol., 2004, 38, 314–318CrossRefGoogle Scholar
  23. [23]
    Wipf S., Rixen C., Fischer M., Schmid B., Stoeckli V., Effects of ski piste preparation on alpine vegetation, J.Appl. Ecol., 2005, 42, 306–316CrossRefGoogle Scholar
  24. [24]
    Groffman P.M., Driscoll C.T., Fahey T.J., Hardy J.P., Fitzhugh R.D., Tierney G.L., Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest, Biogeochemistry, 2001, 56, 191–213CrossRefGoogle Scholar
  25. [25]
    Anderson J.M., Hetherington S.L, Temperature, nitrogen availability and mixture effects on the decomposition of heather [Calluna vulgaris (L.) Hull] and bracken [Pteridium aquilinum (L.) Kuhn]_litters, Funct. Ecol., 1999, 13,suppl. 1, 116–124CrossRefGoogle Scholar
  26. [26]
    Shaw M.R., Harte J., Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change, Ecol. App., 2001, 11, 1206–1223Google Scholar
  27. [27]
    Gartner T.B., Cardon Z.G., Decomposition dynamics in mixed-species leaf litter, Oikos, 2004, 104, 230–246CrossRefGoogle Scholar
  28. [28]
    Andreyashkina N.I., Peshkova N.V., On assessing decomposition rates of plant debris and standard cellulose samples in tundra communities, Russ. J. Ecol., 2001, 32, 52–55CrossRefGoogle Scholar
  29. [29]
    Berg B., Kärenlampi L., Veum A.K., Comparisons of decomposition rates measured by means of cellulose, In: Wielgolaski F.E. (Ed.), Fennoscandian tundra ecosystems, Springer, Berlin-Heidelberg-New York, 1975Google Scholar
  30. [30]
    Jeník J., Výšková stupňovitost Hrubého Jeseníku: otázka alpínského stupně [Altitude zones in the Hrubý Jeseník Mts., the Alpine Zone], Campanula, 1972, 3, 45–52 (in Czech)Google Scholar
  31. [31]
    Treml V., Banaš M., (2008): The effect of exposure on alpine treeline position: a case study form the High Sudetes, Czech Republic. Arct. Antarct. Alp. Res., 2008, 40, 751–761CrossRefGoogle Scholar
  32. [32]
    Treml V., Banaš M., Alpine timberline in the High Sudeties, Acta Universitatis Carolinae, Geographica, Praha, 2000, 35, 83–99Google Scholar
  33. [33]
    Banaš M., Zeidler M., Duchoslav M., Hošek J., Growth of alpine lady-fern (Athyrium distentifolium) and plant species composition on a ski piste in the Hrubý Jeseník Mts., Czech Republic, Ann. Bot. Fenn., 2010, 47, 280–292CrossRefGoogle Scholar
  34. [34]
    Kašák J., Mazalová M., Šipoš J., Kuras T., The effect of alpine ski-slopes on epigeic beetles: does even a nature-friendly management make a change? J. Insect Conserv., 2013, 17, 975–988CrossRefGoogle Scholar
  35. [35]
    Lednický V., Podnebí Pradědu. [The climate of Mt. Praděd], Severni Morava, 1985, 49, 44–48, (in Czech)Google Scholar
  36. [36]
    Kubát K., Hrouda L., Chrtek J. jun., Kaplan Z., Kirschner J., Štěpánek J., Klíč ke květeně České republiky [Key to flora of the Czech Republic]. Academia, Praha, 2002, (in Czech)Google Scholar
  37. [37]
    Chytrý M., Vegetation of the Czech Republic. — 1. Grassland and heathland vegetation, Academia, Praha, 2007Google Scholar
  38. [38]
    Kočí M., Subalpine tall-forb vegetation (Mulgedio-Aconitetea) in the Czech Republic, Preslia, 2001, 73, 289–331Google Scholar
  39. [39]
    Kočí M., Subalpine tall-forb and deciduous-shrub vegetation, In: Chytrý M. (Ed.), Vegetation of the Czech Republic — 1. Grassland and heathland vegetation, Academia, Praha, 2007, (in Czech)Google Scholar
  40. [40]
    Kočí M., Alpine heathlands, In: Chytrý M. (Ed.), Vegetation of the Czech Republic — 1. Grassland and heathland vegetation, Academia, Praha, 2007Google Scholar
  41. [41]
    Bocock K.L., Gilbert O.J., The disappearance of leaf litter under different woodland conditions, Plant Soil, 1957, 9, 351–370CrossRefGoogle Scholar
  42. [42]
    Hobbie S.E., Temperature and plant species control over litter decomposition in Alaskan tundra, Ecol. Monogr., 1996, 66, 503–522CrossRefGoogle Scholar
  43. [43]
    Mackey J.M.L., Neal A.M., Harvesting, recording weight, area and length, In: Hendry G.A.F, Grime J.P. (Eds.), Methods in comparative plant ecology, a laboratory manual, Chapman and Hall, London, UK, 1993Google Scholar
  44. [44]
    Anderson J.M., Decomposition, In: Hendry G.A.F., Grime J.P. (Eds.), Methods in comparative plant ecology, Chapman and Hall, London, 1993Google Scholar
  45. [45]
    Wiegert R.G., Evans F.C., Primary production and the disappearance of dead vegetation on an old field in southeastern Michigan, Ecology, 1964, 45, 49–63CrossRefGoogle Scholar
  46. [46]
    Sokal R.R., Rohlf F.J., Biometry: the principles and practice of statistics in biological research. W. H. Freeman, New York, 1995Google Scholar
  47. [47]
    Sturm M., Holmgren J., Konig M., Morris K., The thermal conductivity of seasonal snow. J. Glaciol., 1997, 43, 26–41Google Scholar
  48. [48]
    Rixen C., Haeberli W., Stoeckli V., Ground temperatures under ski pistes with artificial and natural snow, Arct. Antarct. Alp. Res., 2004, 36, 419–427CrossRefGoogle Scholar
  49. [49]
    Baiderin V.V., Experimental modelling of ecological consequences of winter recreations, Sov. J. Ecol., 1981, 11, 140–146Google Scholar
  50. [50]
    Titus J.H., Ski slope vegetation of Mount Hood, Oregon, USA, Arct. Antarct. Alp. Res., 1999, 31, 283–292CrossRefGoogle Scholar
  51. [51]
    Mosimann T., Schneeanlagen in der Schweiz; aktueller Stand — Umwelteinflüsse — Empfehlungen [Snow facilities in Switzerland; present state — environmental consequences — recommendations], Materialien zur Physiogeographie 10, Geographisches Institut der Universtität Basel, Basel, 1987, (in German)Google Scholar
  52. [52]
    Jonasson S., Michelsen A., Schmidt I.K., Nielsen E.V., Responses in microbes and plants to changed temperature, nutrient and light regimes in the Arctic, 1999, Ecology, 80, 1828–1843CrossRefGoogle Scholar
  53. [53]
    Nadelhoffer K.J., Giblin A.E., Shawer G.R., Laundre J.A., Effects of temperature and substrate quality on element mineralization on six arctic soils, Ecology, 1991, 72, 242–253CrossRefGoogle Scholar
  54. [54]
    Wahren C.H.A., Walker M.D., Bret-Harte M.S., Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment, Glob. Change Biol., 2005, 11, 537–552CrossRefGoogle Scholar
  55. [55]
    Kuhn M., The nutrient cycle through snow and ice, a review, Aquat Sci, 2001, 63, 150–167CrossRefGoogle Scholar
  56. [56]
    Kuhn M., Haslhofer J., Nickus U., Schellander H., Seasonal development of ion concentration in a high alpine snow pack, Atmos Environ, 1998, 32, 4041–4051CrossRefGoogle Scholar
  57. [57]
    Körner C, Mountain biodiversity, its causes and function, Ambio, 2004, 13, 11–17Google Scholar
  58. [58]
    Cornelissen J.H.C., An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types, J. Ecol., 1996, 84, 573–582CrossRefGoogle Scholar
  59. [59]
    Cornelissen J.H., van Bodegom P.M, Aerts R., Callaghan T.V., van Logtestijn R.S., Alatalo J., et al., Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes, Ecol. Lett., 2007, 10, 619–627PubMedCrossRefGoogle Scholar
  60. [60]
    Saccone P., Morin S., Colomb C., Baptist F., Bonneville J.M., Colace M.P. et al., The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows, Plant Soil, 2013, 363, 215–229CrossRefGoogle Scholar
  61. [61]
    Cornwell W.K., Cornelissen J.H.C., Amatangelo K., Dorrepaal E., Eviner V.T., Godoy O., et al., Plant species traits are the predominant control of litter decomposition rates within biomes worldwide, Ecol. Lett., 2008, 11, 1065–1071PubMedCrossRefGoogle Scholar
  62. [62]
    Cortez J., Garnier E., Pérez-Harguindeguy N., Debussche M., Gillon D., Plant traits, litter quality and decomposition in a Mediterranean old-field succession, Plant Soil, 2007, 296, 19–34CrossRefGoogle Scholar
  63. [63]
    Haraguchi A., Hasegawa C., Hirayama A., Kojima H., Decomposition activity of peat soils in geogenous mires in Sasakami, central Japan, Eur. J. Soil Biol., 2003, 39, 191–196CrossRefGoogle Scholar
  64. [64]
    Sundqvist M.K., Giesler R., Wardle D.A., Within- and across-species responses of plant traits and litter decomposition to elevation across contrasting vegetation types in subarctic tundra, PLoS ONE, 2011Google Scholar
  65. [65]
    McHaffie H.S., Athyrium distentifolium Tausch ex Opiz (A. alpestre (Hoppe) Rylands ex T. Moorenon-Clairv.) including A. distentifolium var. flexile (Newman) Jermy, J. Ecol., 2005, 93, 839–851CrossRefGoogle Scholar
  66. [66]
    Drewnik M., The effect of environmental conditions on the decomposition rate of cellulose in mountain soils, Geoderma, 2006, 132, 116–130CrossRefGoogle Scholar
  67. [67]
    Tůma I., Variation in the activity of cellulolytic microorganisms in several ecosystems of the Beskydy Mts., Ekologia (Bratislava), 1998, 17, 316–326Google Scholar
  68. [68]
    Gerdol R., Anfodillo T., Gualmini M., Cannone N., Bragazza L., Brancaleoni L., Biomass distribution of two subalpine dwarf-shrubs in relation to soil moisture and nutrient content, J. Veg. Sci., 2004, 15, 457–464CrossRefGoogle Scholar
  69. [69]
    Johansson M.B., Biomass, decomposition and nutrient release of Vaccinium myrtillus leaf litter in four forest stands, Scand. J. Forest. Res., 1993, 8, 466–479CrossRefGoogle Scholar
  70. [70]
    Brooks P.D., Williams M.V., Schmidt S.K, Microbial activity under Alpine snowpacks, Niwot Ridge, Colorado, Biogeochemistry, 1996, 32, 93–113Google Scholar
  71. [71]
    O’Lear H.A., Seastedt T.R, Landscape patterns of litter decomposition in alpine tundra, Oecologia, 1994, 99, 95–101CrossRefGoogle Scholar
  72. [72]
    Bryant D.M., Holland E.A., Seastedt T.R., Walker M.D., Analysis of litter decomposition in an alpine tundra, Can. J. Botany, 1998, 76, 1295–1304Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Miroslav Zeidler
    • 1
  • Martin Duchoslav
    • 2
  • Marek Banaš
    • 1
  1. 1.Department of Ecology and Environmental SciencePalacký University, Faculty of ScienceOlomoucCzech Republic
  2. 2.Plant Biosystematics and Ecology Research Group, Department of BotanyPalacký University, Faculty of ScienceOlomoucCzech Republic

Personalised recommendations